Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct 10;12(10):3520-7.
doi: 10.1021/bm200700d. Epub 2011 Sep 12.

Osteogenic differentiation of pre-osteoblasts on biomimetic tyrosine-derived polycarbonate scaffolds

Affiliations

Osteogenic differentiation of pre-osteoblasts on biomimetic tyrosine-derived polycarbonate scaffolds

Jinku Kim et al. Biomacromolecules. .

Abstract

The osteogenic potential of biomimetic tyrosine-derived polycarbonate (TyrPC) scaffolds containing either an ethyl ester or a methyl ester group combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) was assessed using the preosteoblast cell line MC3T3-E1. Each composition of TyrPC was fabricated into 3D porous scaffolds with a bimodal pore distribution of micropores <20 μm and macropores between 200 and 400 μm. Scanning electron microscopy (SEM) characterization suggested MC3T3-E1 cell attachment on the TyrPC scaffold surface. Moreover, the 3D TyrPC-containing ethyl ester side chains supported osteogenic lineage progression, alkaline phosphatase (ALP), and osteocalcin (OCN) expression as well as an increase in calcium content compared with the scaffolds containing the methyl ester group. The release profiles of rhBMP-2 from the 3D TyrPC scaffolds by 15 days suggested a biphasic rhBMP-2 release. There was no significant difference in bioactivity between rhBMP-2 releasate from the scaffolds and exogenous rhBMP-2. Lastly, the TyrPC containing rhBMP-2 promoted more ALP activity and mineralization of MC3T3-E1 cells compared with TyrPC without rhBMP-2. Consequently, the data strongly suggest that TyrPC scaffolds will provide a highly useful platform for bone tissue engineering.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources