Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment
- PMID: 21838703
- PMCID: PMC3290776
- DOI: 10.2174/138920012799320455
Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment
Abstract
Copper is an essential trace element required by all living organisms. Excess amounts of copper, however, results in cellular damage. Disruptions to normal copper homeostasis are hallmarks of three genetic disorders: Menkes disease, occipital horn syndrome, and Wilson's disease. Menkes disease and occipital horn syndrome are characterized by copper deficiency. Typical features of Menkes disease result from low copper-dependent enzyme activity. Standard treatment involves parenteral administration of copper-histidine. If treatment is initiated before 2 months of age, neurodegeneration can be prevented, while delayed treatment is utterly ineffective. Thus, neonatal mass screening should be implemented. Meanwhile, connective tissue disorders cannot be improved by copper-histidine treatment. Combination therapy with copper-histidine injections and oral administration of disulfiram is being investigated. Occipital horn syndrome characterized by connective tissue abnormalities is the mildest form of Menkes disease. Treatment has not been conducted for this syndrome. Wilson's disease is characterized by copper toxicity that typically affects the hepatic and nervous systems severely. Various other symptoms are observed as well, yet its early diagnosis is sometimes difficult. Chelating agents and zinc are effective treatments, but are inefficient in most patients with fulminant hepatic failure. In addition, some patients with neurological Wilson's disease worsen or show poor response to chelating agents. Since early treatment is critical, a screening system for Wilson's disease should be implemented in infants. Patients with Wilson's disease may be at risk of developing hepatocellular carcinoma. Understanding the link between Wilson's disease and hepatocellular carcinoma will be beneficial for disease treatment and prevention.
Figures
References
-
- Uriu-Adams JY, Scherr RE, Lanoue L, Keen CL. Influence of copper on early development: Prenatal and postnatal considerations. BioFactors. 2010;36(2):136–152. - PubMed
-
- Lalioti V, Muruais G, Tsuchiya Y, Pulido D, Sandoval IV. Molecular mechanisms of copper homeostasis. Front. Biosci. 2009;14:4878–4903. - PubMed
-
- Menkes JH, Alte M, Steigleder GK, Weakley DR, Sung JH. A sex-linked reccesive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics. 1962;29:764–769. - PubMed
-
- Danks DM, Campbell PE, Stevens BJ, Mayne V, Cart-wright E. Menkes's kinky hair syndrome. An inherited defect in copper absorption with widespread effects. Pediatrics. 1972;50:188–201. - PubMed
-
- Lazoff SG, Rybak JJ, Parker BR, Luzzatti L. Skeletal dysplasia, occipital horns, diarrhea and obstructive uropathy- a new hereditary syndrome. Birth Defects Orig. Artic. Ser. 1975;11(5):71–74. - PubMed
Publication types
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases