Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Feb;51(1):9-16.

Distribution of peroxisomes and glycolate metabolism in relation to calcium oxalate formation in Lemna minor L

Affiliations
  • PMID: 2184039

Distribution of peroxisomes and glycolate metabolism in relation to calcium oxalate formation in Lemna minor L

X X Li et al. Eur J Cell Biol. 1990 Feb.

Abstract

Calcium oxalate formation in Lemna minor L. occurs in structurally specialized cells called crystal idioblasts. Cytochemical and immunocytochemical protocols were employed to study the distribution of peroxisomes and the enzymes glycolate oxidase, glycine decarboxylase and ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) in relation to synthesis of oxalate used for Ca oxalate formation. These enzymes are necessary for photorespiratory glycolate synthesis and metabolism. Using catalase cytochemistry, microbodies were found to exist in crystal idioblasts but were smaller and fewer than those found in mesophyll cells. Glycolate oxidase, which can oxidize glycolate to oxalate via glyoxylate, could not be found in microbodies of crystal idioblasts at any stage of development. This enzyme increased in amount in microbodies of mesophyll cells as they matured and could even be found in dense amorphous inclusions of mature cell peroxisomes. Glycine decarboxylase and RuBisCO could also be detected in increasing amount in mesophyll cells as they matured but could not be detected in idioblasts or were just detectable. Thus, Lemna idioblasts lack the machinery for synthesis of oxalate from glycolate. Based on these results and other available information, two general models for the generation and accumulation of oxalate used for Ca oxalate formation in crystal idioblasts are proposed. The biochemical specialization of crystal idioblasts indicated by this study is also discussed with respect to differentiation of cellular structure and function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms