Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May 1;144(9):3602-10.

Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines

Affiliations
  • PMID: 2184193

Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines

G Nuñez et al. J Immunol. .

Abstract

The t(14;18) of human follicular B cell lymphoma translocates the Bcl-2 gene into the Ig H chain locus and markedly deregulates Bcl-2 expression. We sought to determine if Bcl-2 could be directly implicated in a growth-factor pathway. Consequently, we introduced a retrovirus containing the murine Bcl-2 gene (N2-M-Bcl-2) or the parental retrovirus (N2) into a series of factor-dependent hemopoietic cell lines. Overexpressed Bcl-2 resulted in no long term IL-2, IL-3, or IL-6 independent clones, indicating that Bcl-2 could not spare the need for a specific ligand-receptor interaction. However, Bcl-2 did extend the short term survival of IL-3-dependent cell lines after factor deprivation. Although viable, IL-3-deprived pro B lymphocytes (FL5.12) bearing N2-M-Bcl-2 were in Go, and deregulated Bcl-2 did not obviously influence cell-cycle progression. Bcl-2 predominant effects were to delay the onset of cell death and to modestly augment viable cell growth in the first 48 h after IL-3 deprivation. This death sparing was associated with increased levels of Bcl-2 RNA and protein in factor-deprived cells possessing N2-M-Bcl-2. This result was not restricted to prolymphocytes because an IL-3-dependent mast cell line (32D) as well as a promyeloid line (FDC-P1) demonstrated the same response to Bcl-2. Moreover, the effect was not limited to the IL-3/IL-3R signal transduction pathway in that promyeloid cells maintained in granulocyte-macrophage-CSF or IL-4 displayed a similar response. Yet, Bcl-2-enhanced cell survival was not universal as an IL-2-dependent T cell line, and an IL-6-dependent myeloma line demonstrated no consistent effect upon IL withdrawal. Thus, Bcl-2 appears to interfere with cell death but in a cell type and/or factor-restricted fashion.

PubMed Disclaimer

MeSH terms