Amplification, mutation, and sequencing of a six-letter synthetic genetic system
- PMID: 21842904
- PMCID: PMC3427765
- DOI: 10.1021/ja204910n
Amplification, mutation, and sequencing of a six-letter synthetic genetic system
Abstract
The next goals in the development of a synthetic biology that uses artificial genetic systems will require chemistry-biology combinations that allow the amplification of DNA containing any number of sequential and nonsequential nonstandard nucleotides. This amplification must ensure that the nonstandard nucleotides are not unidirectionally lost during PCR amplification (unidirectional loss would cause the artificial system to revert to an all-natural genetic system). Further, technology is needed to sequence artificial genetic DNA molecules. The work reported here meets all three of these goals for a six-letter artificially expanded genetic information system (AEGIS) that comprises four standard nucleotides (G, A, C, and T) and two additional nonstandard nucleotides (Z and P). We report polymerases and PCR conditions that amplify a wide range of GACTZP DNA sequences having multiple consecutive unnatural synthetic genetic components with low (0.2% per theoretical cycle) levels of mutation. We demonstrate that residual mutation processes both introduce and remove unnatural nucleotides, allowing the artificial genetic system to evolve as such, rather than revert to a wholly natural system. We then show that mechanisms for these residual mutation processes can be exploited in a strategy to sequence "six-letter" GACTZP DNA. These are all not yet reported for any other synthetic genetic system.
Figures








Similar articles
-
Joining Natural and Synthetic DNA Using Biversal Nucleotides: Efficient Sequencing of Six-Nucleotide DNA.J Am Chem Soc. 2024 Dec 25;146(51):35129-35138. doi: 10.1021/jacs.4c11043. Epub 2024 Dec 3. J Am Chem Soc. 2024. PMID: 39625448
-
In vitro selection with artificial expanded genetic information systems.Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1449-54. doi: 10.1073/pnas.1311778111. Epub 2013 Dec 30. Proc Natl Acad Sci U S A. 2014. PMID: 24379378 Free PMC article.
-
Toward an Expanded Genome: Structural and Computational Characterization of an Artificially Expanded Genetic Information System.Acc Chem Res. 2017 Jun 20;50(6):1375-1382. doi: 10.1021/acs.accounts.6b00655. Epub 2017 Jun 8. Acc Chem Res. 2017. PMID: 28594167 Free PMC article. Review.
-
Enzyme-assisted high throughput sequencing of an expanded genetic alphabet at single base resolution.Nat Commun. 2024 May 14;15(1):4057. doi: 10.1038/s41467-024-48408-9. Nat Commun. 2024. PMID: 38744910 Free PMC article.
-
The expanded genetic alphabet.Angew Chem Int Ed Engl. 2015 Oct 5;54(41):11930-44. doi: 10.1002/anie.201502890. Epub 2015 Aug 25. Angew Chem Int Ed Engl. 2015. PMID: 26304162 Free PMC article. Review.
Cited by
-
The Astrobiology Primer v2.0.Astrobiology. 2016 Aug;16(8):561-653. doi: 10.1089/ast.2015.1460. Astrobiology. 2016. PMID: 27532777 Free PMC article. Review. No abstract available.
-
Highly specific unnatural base pair systems as a third base pair for PCR amplification.Nucleic Acids Res. 2012 Mar;40(6):2793-806. doi: 10.1093/nar/gkr1068. Epub 2011 Nov 24. Nucleic Acids Res. 2012. PMID: 22121213 Free PMC article.
-
Computational Evaluation of Nucleotide Insertion Opposite Expanded and Widened DNA by the Translesion Synthesis Polymerase Dpo4.Molecules. 2016 Jun 23;21(7):822. doi: 10.3390/molecules21070822. Molecules. 2016. PMID: 27347908 Free PMC article.
-
Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry.Nucleic Acids Res. 2015 Aug 18;43(14):6665-76. doi: 10.1093/nar/gkv638. Epub 2015 Jun 29. Nucleic Acids Res. 2015. PMID: 26130718 Free PMC article.
-
Machine learning guided aptamer refinement and discovery.Nat Commun. 2021 Apr 22;12(1):2366. doi: 10.1038/s41467-021-22555-9. Nat Commun. 2021. PMID: 33888692 Free PMC article.
References
-
- Szybalski W. In vivo and in vitro Initiation of transcription. In: Kohn A, Shatkay A, editors. Control of Gene Expression. New York: Plenum Press; 1974. pp. 23–24.pp. 404–405.pp. 411–412.pp. 415–417.
-
- Henry AA, Romesberg FE. Current Opin Chem Biol. 2003;7:727–733. - PubMed
-
- Piccirilli JA, Krauch T, Moroney SE, Benner SA. Nature. 1990;343:33–37. - PubMed
-
- Bain JD, Chamberlin AR, Switzer CY, Benner SA. Nature. 1992;356:537–539. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases