Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Aug;3(8):997-1005.
doi: 10.2217/imt.11.86.

Cryptococcus neoformans galactoxylomannan is a potent negative immunomodulator, inspiring new approaches in anti-inflammatory immunotherapy

Affiliations
Review

Cryptococcus neoformans galactoxylomannan is a potent negative immunomodulator, inspiring new approaches in anti-inflammatory immunotherapy

Anna Vecchiarelli et al. Immunotherapy. 2011 Aug.

Abstract

Cryptococcus neoformans is an opportunistic fungal pathogen responsible for life-threatening infections in immunocompromised individuals and occasionally in those with no known immune impairment. The fungus is endowed with several virulence factors, including capsular polysaccharides that play a key role in virulence. The capsule is composed of 90-95% glucuronoxylomannan (GXM), 5-8% galactoxylomannan (GalXM) and <1% mannoproteins. Capsular polysaccharides are shed into tissue where they produce many deleterious effects. Since GalXM has a smaller molecular mass, the molar concentration of GalXM in polysaccharide that is shed could exceed that of GXM in C. neoformans exopolysaccharides. Moreover, GalXM exhibits a number of unusual biologic properties both in vitro and in vivo. Here, we summarize the principal immunomodulatory effects of GalXM described during the last 20 years, particularly the mechanisms leading to induction of apoptosis in T lymphocytes, B lymphocytes and macrophages. Since the capacity of GalXM to induce widespread immune suppression is believed to contribute to the virulence of C. neoformans, this property might be exploited therapeutically to dampen the aberrant activation of immune cells during autoimmune disorders.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources