Gene expression profiling of human whole blood samples with the Illumina WG-DASL assay
- PMID: 21843359
- PMCID: PMC3175478
- DOI: 10.1186/1471-2164-12-412
Gene expression profiling of human whole blood samples with the Illumina WG-DASL assay
Abstract
Background: Microarray-based gene expression analysis of peripheral whole blood is a common strategy in the development of clinically relevant biomarker panels for a variety of human diseases. However, the results of such an analysis are often plagued by decreased sensitivity and reliability due to the effects of relatively high levels of globin mRNA in whole blood. Globin reduction assays have been shown to overcome such effects, but they require large amounts of total RNA and may induce distinct gene expression profiles. The Illumina whole genome DASL assay can detect gene expression levels using partially degraded RNA samples and has the potential to detect rare transcripts present in highly heterogeneous whole blood samples without the need for globin reduction. We assessed the utility of the whole genome DASL assay in an analysis of peripheral whole blood gene expression profiles.
Results: We find that gene expression detection is significantly increased with the use of whole genome DASL compared to the standard IVT-based direct hybridization. Additionally, globin-probe negative whole genome DASL did not exhibit significant improvements over globin-probe positive whole genome DASL. Globin reduction further increases the detection sensitivity and reliability of both whole genome DASL and IVT-based direct hybridization with little effect on raw intensity correlations. Raw intensity correlations between total RNA and globin reduced RNA were 0.955 for IVT-based direct hybridization and 0.979 for whole genome DASL.
Conclusions: Overall, the detection sensitivity of the whole genome DASL assay is higher than the IVT-based direct hybridization assay, with or without globin reduction, and should be considered in conjunction with globin reduction methods for future blood-based gene expression studies.
Figures
References
-
- Rockett JC, Burczynski ME, Fornace AJ, Herrmann PC, Krawetz SA, Dix DJ. Surrogate tissue analysis: monitoring toxicant exposure and health status of inaccessible tissues through the analysis of accessible tissues and cells. Toxicol Appl Pharmacol. 2004;194:189–199. doi: 10.1016/j.taap.2003.09.005. - DOI - PubMed
-
- Hoang LT, Lynn DJ, Henn M, Birren BW, Lennon NJ, Le PT, Duong KTH, Nguyen TTH, Mai LN, Farrar JJ, Hibberd ML, Simmons CP. The early whole-blood transcriptional signature of dengue virus and features associated with progression to dengue shock syndrome in Vietnamese children and young adults. J Virol. 2010;84:12982–12994. doi: 10.1128/JVI.01224-10. - DOI - PMC - PubMed
-
- Lin D, Hollander Z, Ng RT, Imai C, Ignaszewski A, Balshaw R, Freue GC, Wilson-McManus JE, Qasimi P, Meredith A, Mui A, Triche T, McMaster R, Keown PA, McManus BM. Whole blood genomic biomarkers of acute cardiac allograft rejection. J Heart Lung Transplant. 2009;28:927–935. doi: 10.1016/j.healun.2009.04.025. - DOI - PubMed
-
- Takahashi M, Hayashi H, Watanabe Y, Sawamura K, Fukui N, Watanabe J, Kitajima T, Yamanouchi Y, Iwata N, Mizukami K, Hori T, Shimoda K, Ujike H, Ozaki N, Iijima K, Takemura K, Aoshima H, Someya T. Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures. Schizophr Res. 2010;119:210–218. doi: 10.1016/j.schres.2009.12.024. - DOI - PubMed
-
- Fan J, Yeakley JM, Bibikova M, Chudin E, Wickham E, Chen J, Doucet D, Rigault P, Zhang B, Shen R, McBride C, Li H, Fu X, Oliphant A, Barker DL, Chee MS. A versatile assay for high-throughput gene expression profiling on universal array matrices. Genome Res. 2004;14:878–885. doi: 10.1101/gr.2167504. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
