Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Nov 18;289(2-3):103-11.
doi: 10.1016/j.tox.2011.07.013. Epub 2011 Aug 6.

Nickel(II) induced JNK activation-regulated mitochondria-dependent apoptotic pathway leading to cultured rat pancreatic β-cell death

Affiliations
Comparative Study

Nickel(II) induced JNK activation-regulated mitochondria-dependent apoptotic pathway leading to cultured rat pancreatic β-cell death

Hsi-Chin Wu et al. Toxicology. .

Abstract

Nickel (Ni), a well-known toxic metal, is widely used in electroplating and alloy production. It is also significantly implicated in industrial and environmental pollution caused by uncontrolled industrial and municipal discharges. In this study, we characterized and investigated the cytotoxic effects of Ni exposure and their probable toxicological mechanisms in the pancreatic β-cells. The results showed that it was significantly decreased cell viability after exposing pancreatic β-cell-derived RIN-m5F cells to NiCl(2) for 24h in a dose-dependent manner. NiCl(2) also increased sub-G1 hypodiploid cells and Annexin V-Cy3 binding population in RIN-m5F cells, indicating that it has apoptosis-inducing ability. Moreover, the exposure of RIN-m5F cells to NiCl(2) induced distinct signals of mitochondria-dependent apoptosis, including mitochondrial dysfunction (the disruption of mitochondrial membrane potential (MMP) and increase in mitochondrial cytochrome c release into the cytosol), Bak and Bid mRNA up-regulation, and activation of caspase-3, caspase-7, and caspase-9, and poly(ADP-ribose) polymerase (PARP) degradation. In addition, NiCl(2) also markedly induced the activation of c-Jun N-terminal kinases (JNK), but not of extracellular signal-regulated kinase (ERK)1/2 and p38. These NiCl(2)-induced apoptosis-related signaling responses could be effectively reversed by specific JNK inhibitor SP600125. To the best of our knowledge, this study is the first to show that Ni causes pancreatic β-cell death through a JNK activation-regulated mitochondria-dependent apoptosis-signaling pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources