Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Nov 18;289(2-3):112-21.
doi: 10.1016/j.tox.2011.08.001. Epub 2011 Aug 6.

Characterization of steroid hormone receptor activities in 100 hydroxylated polychlorinated biphenyls, including congeners identified in humans

Affiliations
Comparative Study

Characterization of steroid hormone receptor activities in 100 hydroxylated polychlorinated biphenyls, including congeners identified in humans

Shinji Takeuchi et al. Toxicology. .

Abstract

Hydroxylated polychlorinated biphenyls (OH-PCBs), major metabolites of PCBs, have been reported to act as estrogen receptor α (ERα) agonists or antagonists. However, little concern has been paid to the ability of OH-PCBs to interfere with other steroid hormone receptors such as ERβ, androgen receptor (AR) or glucocorticoid receptor (GR). In this study, we characterized the agonistic and antagonistic activities of available 100 OH-PCBs (39 ortho-, 24 meta-, and 37 para-OH compounds), including some congeners identified in humans, against human ERα/β, AR, and GR using in vitro reporter gene assays. In the ERα assay, 45 and 9 of the 100 OH-PCBs tested showed agonistic and antagonistic activities, respectively. In the ERβ assay, 45 and 6 compounds showed agonistic and antagonistic activities, respectively. In the AR and GR assays, although none of the compounds tested showed agonistic activity, 83 and 30 of the 100 OH-PCBs showed antagonistic activity, respectively. These AR and/or GR antagonistic compounds had various patterns of substituent in the structure, while relatively potent ERα/β agonistic and antagonistic compounds possessed para- and ortho-OH structures, respectively. Three OH-PCBs, predominantly identified in human tissues, showed little ERα/β or AR activities, apart from the weak ERα and/or GR antagonistic activity observed in 4-OH-CB107 and 4-OH-CB187. Taken together, these results suggest that a large number of OH-PCBs might act as agonists and/or antagonists against ERα/β, AR and GR.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources