Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep 15;187(6):3331-7.
doi: 10.4049/jimmunol.1004062. Epub 2011 Aug 15.

NLRP3/caspase-1-independent IL-1beta production mediates diesel exhaust particle-induced pulmonary inflammation

Affiliations

NLRP3/caspase-1-independent IL-1beta production mediates diesel exhaust particle-induced pulmonary inflammation

Sharen Provoost et al. J Immunol. .

Abstract

Inhalation of diesel exhaust particles (DEP) induces an inflammatory reaction in the lung; however, the mechanisms are largely unclear. IL-1β/IL-1RI signaling is crucial in several lung inflammatory responses. Typically, caspase-1 is activated within the NLRP3 inflammasome that recognizes several damage-associated molecular patterns, which results in cleavage of pro-IL-1β into mature IL-1β. In this study, we hypothesized that the NLRP3/caspase-1/IL-1β pathway is critical in DEP-induced lung inflammation. Upon DEP exposure, IL-1RI knockout mice had reduced pulmonary inflammation compared with wild-type mice. Similarly, treatment with rIL-1R antagonist (anakinra) and IL-1β neutralization impaired the DEP-induced lung inflammatory response. Upon DEP exposure, NLRP3 and caspase-1 knockout mice, however, showed similar IL-1β levels and comparable pulmonary inflammation compared with wild-type mice. In conclusion, these data show that the DEP-induced pulmonary inflammation acts through the IL-1β/IL-1RI axis. In addition, DEP initiates inflammation independent of the classical NLRP3/caspase-1 pathway, suggesting that other proteases might be involved.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources