Computer-aided identification of prostatic adenocarcinoma: Segmentation of glandular structures
- PMID: 21845231
- PMCID: PMC3153693
- DOI: 10.4103/2153-3539.83193
Computer-aided identification of prostatic adenocarcinoma: Segmentation of glandular structures
Abstract
Background: Identification of individual prostatic glandular structures is an important prerequisite to quantitative histological analysis of prostate cancer with the aid of a computer. We have developed a computer method to segment individual glandular units and to extract quantitative image features, for computer identification of prostatic adenocarcinoma.
Methods: TWO SETS OF DIGITAL HISTOLOGY IMAGES WERE USED: database I (n = 57) for developing and testing the computer technique, and database II (n = 116) for independent validation. The segmentation technique was based on a k-means clustering and a region-growing method. Computer segmentation results were evaluated subjectively and also compared quantitatively against manual gland outlines, using the Jaccard similarity measure. Quantitative features that were extracted from the computer segmentation results include average gland size, spatial gland density, and average gland circularity. Linear discriminant analysis (LDA) was used to combine quantitative image features. Classification performance was evaluated with receiver operating characteristic (ROC) analysis and the area under the ROC curve (AUC).
Results: Jaccard similarity coefficients between computer segmentation and manual outlines of individual glands were between 0.63 and 0.72 for non-cancer and between 0.48 and 0.54 for malignant glands, respectively, similar to an interobserver agreement of 0.79 for non-cancer and 0.75 for malignant glands, respectively. The AUC value for the features of average gland size and gland density combined via LDA was 0.91 for database I and 0.96 for database II.
Conclusions: Using a computer, we are able to delineate individual prostatic glands automatically and identify prostatic adenocarcinoma accurately, based on the quantitative image features extracted from computer-segmented glandular structures.
Keywords: Computer-aided classification; digital histology images; feature analysis; image segmentation; prostatic adenocarcinoma.
Figures






References
-
- Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49. - PubMed
-
- Allsbrook WC, Jr, Mangold KA, Johnson MH, Lane RB, Lane CG, Amin MB, et al. Interobserver reproducibility of Gleason grading of prostatic carcinoma: Urologic pathologists. Hum Pathol. 2001;32:74–80. - PubMed
-
- Allsbrook WC, Jr, Mangold KA, Johnson MH, Lane RB, Lane CG, Epstein JI. Interobserver reproducibility of Gleason grading of prostatic carcinoma: general pathologist. Hum Pathol. 2001;32:81–8. - PubMed
-
- Sooriakumaran P, Lovell DP, Henderson A, Denham P, Langley SE, Laing RW. Gleason scoring varies among pathologists and this affects clinical risk in patients with prostate cancer. Clin Oncol. 2005;17:655–8. - PubMed
-
- Frable WJ. Surgical pathology-second reviews, institutional reviews, audits, and correlations: what's out there.Error or diagnostic variation? Arch Pathol Lab Med. 2006;130:620–5. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials