Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011:2:33.
doi: 10.4103/2153-3539.83193. Epub 2011 Jul 26.

Computer-aided identification of prostatic adenocarcinoma: Segmentation of glandular structures

Affiliations

Computer-aided identification of prostatic adenocarcinoma: Segmentation of glandular structures

Yahui Peng et al. J Pathol Inform. 2011.

Abstract

Background: Identification of individual prostatic glandular structures is an important prerequisite to quantitative histological analysis of prostate cancer with the aid of a computer. We have developed a computer method to segment individual glandular units and to extract quantitative image features, for computer identification of prostatic adenocarcinoma.

Methods: TWO SETS OF DIGITAL HISTOLOGY IMAGES WERE USED: database I (n = 57) for developing and testing the computer technique, and database II (n = 116) for independent validation. The segmentation technique was based on a k-means clustering and a region-growing method. Computer segmentation results were evaluated subjectively and also compared quantitatively against manual gland outlines, using the Jaccard similarity measure. Quantitative features that were extracted from the computer segmentation results include average gland size, spatial gland density, and average gland circularity. Linear discriminant analysis (LDA) was used to combine quantitative image features. Classification performance was evaluated with receiver operating characteristic (ROC) analysis and the area under the ROC curve (AUC).

Results: Jaccard similarity coefficients between computer segmentation and manual outlines of individual glands were between 0.63 and 0.72 for non-cancer and between 0.48 and 0.54 for malignant glands, respectively, similar to an interobserver agreement of 0.79 for non-cancer and 0.75 for malignant glands, respectively. The AUC value for the features of average gland size and gland density combined via LDA was 0.91 for database I and 0.96 for database II.

Conclusions: Using a computer, we are able to delineate individual prostatic glands automatically and identify prostatic adenocarcinoma accurately, based on the quantitative image features extracted from computer-segmented glandular structures.

Keywords: Computer-aided classification; digital histology images; feature analysis; image segmentation; prostatic adenocarcinoma.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Digital histology images of (a) benign glands and (b) malignant adenocarcinoma glands. L = glandular lumen; S = stroma; and E = prostatic epithelium
Figure 2
Figure 2
Flowchart of computer gland segmentation techniques
Figure 3
Figure 3
Example images of (upper left) original image (after artifact correction), (upper right) computer gland segmentation results, (lower left) researcher A's manual outlines of glands, and (lower right) researcher B's manual outlines of glands
Figure 4
Figure 4
Subjective and qualitative evaluation of computer segmentation results by (left) a pathologist and (right) a researcher. Shown are histograms of (top) overall accuracy, and (bottom) estimates of false-negative and false-positive glands in the computer segmentation results
Figure 5
Figure 5
Comparison of Jaccard coefficients (left) between repeated gland identification by researcher A (intraobserver comparison) and between glands identified by researchers A and B (interobserver comparison); (middle) between repeated gland identification by researcher A (intraobserver comparison) and between glands identified by the computer and researcher B (human-computer comparison); and (right) between glands identified by the computer and both researchers (human-computer comparisons)
Figure 6
Figure 6
Receiver operating characteristic (ROC) curves of the individual and combined glandular features calculated from computer outlines of individual prostatic glands in images of (left) databases I, and (right) II. Area under the ROC curve (AUC) can be interpreted as a summary index of classification performance. An AUC value of 0.5 indicates a ‘random call,’ whereas an AUC value of 1.0 indicates perfect separation of non-cancer and cancer glands

References

    1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49. - PubMed
    1. Allsbrook WC, Jr, Mangold KA, Johnson MH, Lane RB, Lane CG, Amin MB, et al. Interobserver reproducibility of Gleason grading of prostatic carcinoma: Urologic pathologists. Hum Pathol. 2001;32:74–80. - PubMed
    1. Allsbrook WC, Jr, Mangold KA, Johnson MH, Lane RB, Lane CG, Epstein JI. Interobserver reproducibility of Gleason grading of prostatic carcinoma: general pathologist. Hum Pathol. 2001;32:81–8. - PubMed
    1. Sooriakumaran P, Lovell DP, Henderson A, Denham P, Langley SE, Laing RW. Gleason scoring varies among pathologists and this affects clinical risk in patients with prostate cancer. Clin Oncol. 2005;17:655–8. - PubMed
    1. Frable WJ. Surgical pathology-second reviews, institutional reviews, audits, and correlations: what's out there.Error or diagnostic variation? Arch Pathol Lab Med. 2006;130:620–5. - PubMed