Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct 7;40(37):9512-24.
doi: 10.1039/c1dt10886g. Epub 2011 Aug 15.

Synthesis of a chloro protected iridium nitrido complex

Affiliations

Synthesis of a chloro protected iridium nitrido complex

Daniel Sieh et al. Dalton Trans. .

Abstract

Intramolecular activation processes of vulnerable ligand C-H bonds frequently limit the thermal stability and accessibility of late transition metal complexes with terminal metal nitrido units. In this study chloro substitution of the 2,6-ketimine N-aryl substituents (2,6-C(6)H(3)R(2), R = Cl) of the pyridine, diimine ligand is probed to increase the stability of square-planar iridium nitrido compounds. The thermal stability of iridium azido precursor and nitrido compounds was studied by a combination of thermoanalytical methods (DTG/MS and DSC) and were compared to the results for the related complexes with 2,6-dialkyl substituted N-aryl groups (R = Me, iPr). The investigations were complemented by DFT calculations, which allowed us to unravel details of the thermal decomposition pathways and provided mechanistic insights of further conversion steps and fluctional processes. The DTG/MS and DSC measurements revealed two different types of thermolysis pathways for the azido compounds. For the complexes with R = Cl and iPr substituents, two well-separated exothermic processes were observed. The first moderately exothermic loss of N(2) is followed by a second, strongly exothermic transformation. This contrasts the experimental results for the compound with 2,6-dimethyl substituents (R = Me), where both steps proceed concurrently in the same temperature range. The separation of the two thermal steps in the 2,6-dichloro substituted derivative allowed us to develop a protocol for the isolation of the highly insoluble nitrido complex, which was characterized by UV/vis, IR-spectroscopy and elemental analysis. Its constitution was further confirmed by reaction with silanes, which gave the corresponding silyl amido complexes.

PubMed Disclaimer

LinkOut - more resources