Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec;68(6):987-98.
doi: 10.1111/j.1365-313X.2011.04749.x. Epub 2011 Oct 13.

Glucose and ethylene signalling pathways converge to regulate trans-differentiation of epidermal transfer cells in Vicia narbonensis cotyledons

Affiliations
Free article

Glucose and ethylene signalling pathways converge to regulate trans-differentiation of epidermal transfer cells in Vicia narbonensis cotyledons

Felicity A Andriunas et al. Plant J. 2011 Dec.
Free article

Abstract

Transfer cells are specialized transport cells containing invaginated wall ingrowths that provide an amplified plasma membrane surface area with high densities of transporter proteins. They trans-differentiate from differentiated cells at sites where enhanced rates of nutrient transport occur across apo/symplasmic boundaries. Despite their physiological importance, the signal(s) and signalling cascades responsible for initiating their trans-differentiation are poorly understood. In culture, adaxial epidermal cells of Vicia narbonensis cotyledons were induced to trans-differentiate to a transfer cell morphology. Manipulating their intracellular glucose concentrations by transgenic knock-down of ADP-glucose pyrophosphorylase expression and/or culture on a high-glucose medium demonstrated that glucose functioned as a negative regulator of wall ingrowth induction. In contrast, glucose had no detectable effect on wall ingrowth morphology. The effect on wall ingrowth induction of culture on media containing glucose analogues suggested that glucose acts through a hexokinase-dependent signalling pathway. Elevation of an epidermal cell-specific ethylene signal alone, or in combination with glucose analogues, countered the negative effect of glucose on wall ingrowth induction. Glucose modulated the amplitude of ethylene-stimulated wall ingrowth induction by down-regulating the expression of ethylene biosynthetic genes and an ethylene insensitive 3 (EIN3)-like gene (EIL) encoding a key transcription factor in the ethylene signalling cascade. A model is presented describing the interaction between glucose and ethylene signalling pathways regulating the induction of wall ingrowth formation in adaxial epidermal cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources