Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2011 Aug 17:10:241.
doi: 10.1186/1475-2875-10-241.

Frequency of glucose-6-phosphate dehydrogenase deficiency in malaria patients from six African countries enrolled in two randomized anti-malarial clinical trials

Affiliations
Clinical Trial

Frequency of glucose-6-phosphate dehydrogenase deficiency in malaria patients from six African countries enrolled in two randomized anti-malarial clinical trials

Nick Carter et al. Malar J. .

Abstract

Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is common in populations living in malaria endemic areas. G6PD genotype and phenotype were determined for malaria patients enrolled in the chlorproguanil-dapsone-artesunate (CDA) phase III clinical trial programme.

Methods: Study participants, aged > 1 year, with microscopically confirmed uncomplicated Plasmodium falciparum malaria, and haemoglobin ≥ 70 g/L or haematocrit ≥ 25%, were recruited into two clinical trials conducted in six African countries (Burkina Faso, Ghana, Kenya, Nigeria, Tanzania, Mali). G6PD genotype of the three most common African forms, G6PD*B, G6PD*A (A376G), and G6PD*A- (G202A, A542T, G680T and T968C), were determined and used for frequency estimation. G6PD phenotype was assessed qualitatively using the NADPH fluorescence test. Exploratory analyses investigated the effect of G6PD status on baseline haemoglobin concentration, temperature, asexual parasitaemia and anti-malarial efficacy after treatment with CDA 2/2.5/4 mg/kg or chlorproguanil-dapsone 2/2.5 mg/kg (both given once daily for three days) or six-dose artemether-lumefantrine.

Results: Of 2264 malaria patients enrolled, 2045 had G6PD genotype available and comprised the primary analysis population (1018 males, 1027 females). G6PD deficiency prevalence was 9.0% (184/2045; 7.2% [N = 147] male hemizygous plus 1.8% [N = 37] female homozygous), 13.3% (273/2045) of patients were heterozygous females, 77.7% (1588/2045) were G6PD normal. All deficient G6PD*A- genotypes were A376G/G202A. G6PD phenotype was available for 64.5% (1319/2045) of patients: 10.2% (134/1319) were G6PD deficient, 9.6% (127/1319) intermediate, and 80.2% (1058/1319) normal. Phenotype test specificity in detecting hemizygous males was 70.7% (70/99) and 48.0% (12/25) for homozygous females. Logistic regression found no significant effect of G6PD genotype on adjusted mean baseline haemoglobin (p = 0.154), adjusted mean baseline temperature (p = 0.9617), or adjusted log mean baseline parasitaemia (p = 0.365). There was no effect of G6PD genotype (p = 0.490) or phenotype (p = 0.391) on the rate of malaria recrudescence, or reinfection (p = 0.134 and p = 0.354, respectively).

Conclusions: G6PD deficiency is common in African patients with malaria and until a reliable and simple G6PD test is available, the use of 8-aminoquinolines will remain problematic. G6PD status did not impact baseline haemoglobin, parasitaemia or temperature or the outcomes of anti-malarial therapy.

Trial registration: Clinicaltrials.gov: NCT00344006 and NCT00371735.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Trial profile and patient population.
Figure 2
Figure 2
Baseline haemoglobin by G6PD genotype for patients aged: A, 1- < 5 years; B, 5- < 15 years; and C, ≥ 15 years. G6PD genotype: male hemizygous = A-; male normal = A or B; female homozygous = A-/A-; female heterozygous = A/A- or B/A-; and female normal = A/A, B/B or B/A.
Figure 3
Figure 3
Baseline temperature by G6PD genotype. G6PD genotype: male hemizygous = A-; male normal = A or B; female homozygous = A-/A-; female heterozygous = A/A- or B/A-; and female normal = A/A, B/B or B/A.
Figure 4
Figure 4
Baseline parasitaemia (Log10) by G6PD genotype. G6PD genotype: male hemizygous = A-; male normal = A or B; female homozygous = A-/A-; female heterozygous = A/A- or B/A-; and female normal = A/A, B/B or B/A.

References

    1. Luzzatto L, Mehta A, Vulliamy T. In: The Metabolic & Molecular Bases of Inherited Disease. Scriver C, Beaudet A, Sly W, Valle D, editor. Vol. 3. New York: McGraw Hill; 2001. Glucose-6-phosphate dehydrogenase deficiency; pp. 4517–4553. - PubMed
    1. Beutler E, Vulliamy TJ. Hematologically important mutations: glucose-6-phosphate dehydrogenase. Blood Cells Mol Dis. 2002;28:93–103. doi: 10.1006/bcmd.2002.0490. - DOI - PubMed
    1. Clark TG, Fry AE, Auburn S, Campino S, Diakite M, Green A, Richardson A, Teo YY, Small K, Wilson J, Jallow M, Sisay-Joof F, Pinder M, Sabeti P, Kwiatkowski DP, Rockett KA. Allelic heterogeneity of G6PD deficiency in West Africa and severe malaria susceptibility. Eur J Hum Genet. 2009;17:1080–1085. doi: 10.1038/ejhg.2009.8. - DOI - PMC - PubMed
    1. Ruwende C, Khoo SC, Snow RW, Yates SN, Kwiatkowski D, Gupta S, Warn P, Allsopp CE, Gilbert SC, Peschu N, Newbold C, Greenwood B, Marsh K, Hill A. Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature. 1995;376:246–249. doi: 10.1038/376246a0. - DOI - PubMed
    1. Guindo A, Fairhurst RM, Doumbo OK, Wellems TE, Diallo DA. X-linked G6PD deficiency protects hemizygous males but not heterozygous females against severe malaria. PLoS Med. 2007;4:e66. doi: 10.1371/journal.pmed.0040066. - DOI - PMC - PubMed

Publication types

MeSH terms

Associated data