Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May;82(5):344-9.

Application of neuron networks in the diagnostics of endometrial pathologies

Affiliations
  • PMID: 21851032

Application of neuron networks in the diagnostics of endometrial pathologies

Kotarska Maria et al. Ginekol Pol. 2011 May.

Abstract

Aim: The aim of the study was to construct neuron networks utilizing selected risk factors and ultrasonographic (USG) examination parameters in a two-dimensional (2D) and three-dimensional (3D) presentation in relation to endometrial pathologies.

Materials and methods: The following risk factors were statistically analyzed: age and menopausal status, parity using hormonal replacement therapy (HRT), BMI, 2D USG of the endometrium (thickness, uterine artery blood flow indices) and 3D USG (volume, vascularization indices) in relation to the result of histopathological examination of the endometrial tissue in 421 women, aged 22-87 years, with abnormal bleeding from the uterus. The changes of the sensitivity and specificity in the applied models corresponding to changes of the limit value, were presented in the form of receiver operating characteristic curves (ROC) and the comparison of the values of the area under the curve (AUC). The threshold value for the obtained models was established and models of artificial neuron networks (ANN) were constructed on the basis of the ROC.

Conclusion: Application of artificial neural networks in medicine has been developing rapidly They have been applied in pre-surgical differentiation of ovarian tumors and other neoplasms. In case of endometrial carcinoma the degree of clinical usage of artificial neural networks has been limited, despite the fact that, from the mathematical point of view, the differentiation using neural networks would be much more precise than the one that could be obtained by chance.

PubMed Disclaimer

Publication types