Pericellular proteins of the developing mouse tendon: a proteomic analysis
- PMID: 21851252
- PMCID: PMC3771084
- DOI: 10.3109/03008207.2011.602766
Pericellular proteins of the developing mouse tendon: a proteomic analysis
Abstract
Tendon fibroblasts synthesize and assemble collagen fibrils, the basic structural unit of tendons. Regulation of fibrillogenesis is essential for tendon development and function. Fibril assembly begins within extracellular micro-domains associated with the fibroblast surface. We hypothesize that molecules crucial to the regulation of fibril assembly are membrane associated and/or within the pericellular micro-environment. This report defines proteins in the surfaceome, that is, plasma membrane and pericellular matrix, from mouse flexor digitorum longus tendons. Proteomic analysis identified a set of surfaceome molecules including collagens, fibronectin, integrins, proteoglycans, and receptors in extracts from mouse tendons at postnatal day 1, a developmental stage when collagen protofibril nucleation and initial steps in fibril assembly predominate. The proteomic results were validated for molecules identified with a small number of unique peptides and/or low sequence coverage. For these analyses, proteins were selected based on their potential roles in fibril nucleation, that is, collagen V; organization of fibrillogenesis, that is, integrins and fibronectin; and known localization to the plasma membrane with potential to impact matrix assembly, that is, CD44, syndecan-1, epidermal growth factor receptor, and matrix metalloproteinase 25. These molecules were all detected in extracts of the developing tendon, demonstrating that the surfaceome included molecules hypothesized to regulate fibrillogenesis as well as many with no known function in this capacity. This report, therefore, generates an unbiased set of cell surface-associated molecules, providing a resource to identify novel or unexpected regulatory molecules involved in collagen fibril and matrix assembly.
Figures
References
-
- Banos CC, Thomas AH, Kuo CK. Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly. Birth Defects Res C Embryo Today. 2008 Sep;84(3):228–44. - PubMed
-
- Zhang G, Young BB, Ezura Y, Favata M, Soslowsky LJ, Chakravarti S, et al. Development of tendon structure and function: regulation of collagen fibrillogenesis. J Musculoskelet Neuronal Interact. 2005 Mar;5(1):5–21. - PubMed
-
- Holmes DF, Graham HK, Kadler KE. Collagen fibrils forming in developing tendon show an early and abrupt limitation in diameter at the growing tips. J Mol Biol. 1998 Nov 13;283(5):1049–58. - PubMed
-
- Birk DE, Nurminskaya MV, Zycband EI. Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dyn. 1995 Mar;202(3):229–43. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous