Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov;31(11):2577-85.
doi: 10.1161/ATVBAHA.111.232025.

Nitric oxide decreases the expression of endothelin-converting enzyme-1 through mRNA destabilization

Affiliations

Nitric oxide decreases the expression of endothelin-converting enzyme-1 through mRNA destabilization

Viviana Raoch et al. Arterioscler Thromb Vasc Biol. 2011 Nov.

Abstract

Objective: Endothelial function depends on the equilibrium in the synthesis of vasoactive endothelial factors. It is well known that endothelin and nitric oxide (NO) exhibit reciprocal regulation. We assessed the ability of NO to regulate endothelin-converting enzyme-1 (ECE-1) expression in vascular endothelial cells.

Methods and results: Bovine aortic endothelial cells were incubated with 2 different NO donors as well as with a cyclic-GMP analog, dibutyryl-cGMP (dB-cGMP). ECE-1 protein content and mRNA expression were evaluated by Western blot and Northern blot, respectively, promoter activity by transfection experiments, ECE-1 activity by ELISA, and cGMP production by radioimmunoassay. Both NO donors decreased ECE-1 protein content, mRNA expression, and ECE-1 activity. ODQ, an inhibitor of soluble guanylyl cyclase, blocked those effects. NO donors raised cGMP levels, and dB-cGMP mimicked their effects on ECE-1 expression, which were blocked by KT5823, a nonspecific PKG inhibitor. The changes on ECE-1 expression were due to a destabilization on 3'-untranslated region (3'-UTR) of this mRNA, because the activity of a luciferase reporter construct containing the 3'-UTR of the ECE-1 gene was reduced by dB-cGMP in a PKG-dependent manner. The biological relevance of this regulation was confirmed in bovine aortic endothelial cells coincubated with macrophages in the presence of lipopolysaccharide, in eNOS-deficient mice, and in Wistar rats treated with NO donors. In every case, an inverse relationship was observed between NO and ECE-1 protein content.

Conclusion: Our results support that NO regulates ECE-1 expression through a cGMP/PKG-dependent regulatory mechanism at the post-transcriptional level via the 3'-UTR of the ECE-1 gene.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources