Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;6(8):e23354.
doi: 10.1371/journal.pone.0023354. Epub 2011 Aug 10.

Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species

Affiliations

Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species

Eun-Ryeong Hahm et al. PLoS One. 2011.

Abstract

Withaferin A (WA), a promising anticancer constituent of Ayurvedic medicinal plant Withania somnifera, inhibits growth of MDA-MB-231 and MCF-7 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo in association with apoptosis induction, but the mechanism of cell death is not fully understood. We now demonstrate, for the first time, that WA-induced apoptosis is mediated by reactive oxygen species (ROS) production due to inhibition of mitochondrial respiration. WA treatment caused ROS production in MDA-MB-231 and MCF-7 cells, but not in a normal human mammary epithelial cell line (HMEC). The HMEC was also resistant to WA-induced apoptosis. WA-mediated ROS production as well as apoptotic histone-associated DNA fragment release into the cytosol was significantly attenuated by ectopic expression of Cu,Zn-superoxide dismutase in both MDA-MB-231 and MCF-7 cells. ROS production resulting from WA exposure was accompanied by inhibition of oxidative phosphorylation and inhibition of complex III activity. Mitochondrial DNA-deficient Rho-0 variants of MDA-MB-231 and MCF-7 cells were resistant to WA-induced ROS production, collapse of mitochondrial membrane potential, and apoptosis compared with respective wild-type cells. WA treatment resulted in activation of Bax and Bak in MDA-MB-231 and MCF-7 cells, and SV40 immortalized embryonic fibroblasts derived from Bax and Bak double knockout mouse were significantly more resistant to WA-induced apoptosis compared with fibroblasts derived from wild-type mouse. In conclusion, the present study provides novel insight into the molecular circuitry of WA-induced apoptosis involving ROS production and activation of Bax/Bak.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Withaferin A (WA) treatment causes reactive oxygen species (ROS) production in human breast cancer cells.
(A) Chemical structure of WA. (B) Flow cytometric analysis for MitoSOX Red fluorescence in DMSO-treated control and WA-treated MDA-MB-231 and MCF-7 cells (4 h treatment). Results are shown as enrichment factor relative to DMSO-treated control (mean ± SD, n = 3). *P<0.05, significantly different compared with DMSO-treated control by one-way ANOVA with Dunnett's adjustment. (C) Fluorescence microscopy for MitoSOX Red fluorescence in MDA-MB-231 and MCF-7 cells following 4 h treatment with DMSO or 2.5 µM WA. (D) Fluorescence microscopy for MitoSOX Red fluorescence in HMEC following 4 h treatment with DMSO or 2.5 µM WA. (E) Representative EPR spectra in HMEC treated for 4 h with DMSO or 5 µM WA. All experiments were repeated at least twice.
Figure 2
Figure 2. Cu,Zn-Superoxide dismutase (Cu,Zn-SOD) overexpression attenuates withaferin A (WA)-induced apoptosis in MDA-MB-231 and MCF-7 cells.
(A) Immunoblotting for Cu,Zn-SOD using lysates from MDA-MB-231 or MCF-7 cells stably transfected with empty vector (lane 1) or vector encoding for Cu,Zn-SOD (lane 2). (B) Representative EPR spectra in MDA-MB-231 and MCF-7 cells stably transfected with empty vector or vector encoding for Cu,Zn-SOD and treated for 4 h with DMSO or 5 µM WA. (C) Quantitation of EPR signal intensity in MDA-MB-231 and MCF-7 cells transfected with empty vector or vector encoding for Cu,Zn-SOD and treated for 4 h with DMSO or 5 µM WA. Results shown are mean ± SD (n = 3). (D) Histone-associated DNA fragment release into the cytosol (a measure of apoptosis) in MDA-MB-231 and MCF-7 cells transfected with empty vector or vector encoding for Cu,Zn-SOD and treated for 24 h with DMSO or WA. Results shown are mean ± SD (n = 3). (E) Immunoblotting for cleaved caspase-3 using lysates from MDA-MB-231 cells stably transfected with empty vector or vector encoding for Cu,Zn-SOD and treated for 24 h with DMSO or WA. (F) Histone-associated DNA fragment release into the cytosol in HMEC treated for 24 h with DMSO or WA. Results shown are mean ± SD (n = 3). Significantly different (P<0.05) compared with acontrol (DMSO-treated), and b between groups at each dose by one-way ANOVA followed by Bonferroni's adjustment. For data in panels C,D, and F, data are shown as enrichment factor relative to DMSO-treated control. All experiments were repeated at least twice.
Figure 3
Figure 3. Withaferin A (WA) treatment inhibits oxidative phosphorylation (OXPHOS) in MDA-MB-231 and MCF-7 cells.
(A) Pharmacologic profiling of oxygen consumption rate (OCR), an indicator of OXPHOS, in MDA-MB-231 and MCF-7 cells following 4 h treatment with DMSO (control) or the indicated concentrations of WA. After measurement of basal OCR, the cells were treated with a series of metabolic inhibitors, including oligomycin (injection A); FCCP (injection B); 2-DG (injection C); and rotenone (injection D) at the indicated times. (B) Effect of WA treatment on basal OCR in MDA-MB-231 and MCF-7 cells. Basal OCR was calculated using the difference between the mean of time points prior to injection A (#1–#4) and after injection D (#14 to #16; rotenone-sensitive) (formula image). (C) Effect of WA treatment on total reserve respiration capacity in MDA-MB-231 and MCF-7 cells. Total reserve respiration capacity was calculated using the mean of the time points after injection C (#11–#13) minus the mean of time points after injection D (#14–#16) (formula image). Data shown are mean ± SEM of three independent experiments, each performed in triplicate. *P<0.05; **P<0.01; and ***P<0.001, significantly different compared with control by one-way ANOVA with Dunnett's adjustment.
Figure 4
Figure 4. Withaferin A (WA) treatment fails to alter acidification rate (lactate production)and steady-state levels of ATP.
(A) Effect of WA treatment on basal extracellular acidification rate (ECAR), a measure of lactate production, in MDA-MB-231 and MCF-7 cells following 4 h treatment with DMSO (control) or the indicated concentrations of WA. (B) Effect of WA treatment on oligomycin-induced (oligo-induced) ECAR in MDA-MB-231 and MCF-7 cells. Results shown are mean ± SEM of three independent experiments, each performed in triplicate. (C) Steady-state levels of ATP in MDA-MB-231 and MCF-7 cells treated with DMSO (control) or the indicated concentrations of WA in the absence or presence of the metabolic inhibitors. Results shown are mean ± SEM of combination of three independent experiments, each performed in quadruplicate. *P<0.05; **P<0.01; and ***P<0.001, significantly different compared with control by one-way ANOVA with Dunnett's adjustment (Panels A and B) or Student's t-test (panel C).
Figure 5
Figure 5. WA treatment inhibits complex III activity in MDA-MB-231 breast cancer cells.
Mitochondrial complex enzyme activities were determined using lysates from MDA-MB-231 cells treated for 6 h with DMSO or 5 µM WA. Results shown are mean ± SD (n = 3). *P<0.05; **P<0.01, significantly different compared with control by Student's t-test.
Figure 6
Figure 6. Rho-0 variants of MDA-MB-231 and MCF-7 cells are resistant to withaferin A (WA)-mediated apoptosis.
(A) MitoSOX Red fluorescence (a measure of ROS production) in wild-type (WT) and Rho-0 variants of MDA-MB-231 and MCF-7 cells following 4 h treatment with DMSO (control) or WA. Enrichment of MitoSOX Red fluorescence relative to DMSO-treated wild-type cells is shown for both MDA-MB-231 and MCF-7 cells. (B) Histone-associated DNA fragment release into the cytosol in wild-type and Rho-0 variants of MDA-MB-231 and MCF-7 cells following 24 h treatment with DMSO or WA. Enrichment relative to DMSO-treated wild-type cells is shown for both MDA-MB-231 and MCF-7 cells. (C) Analysis of mitochondrial membrane potential (monomeric JC-1-associated green fluorescence) in wild-type and Rho-0 variants of MDA-MB-231 and MCF-7 cells following 24 h treatment with DMSO or WA. Enrichment relative to DMSO-treated wild-type cells is shown for both MDA-MB-231 and MCF-7 cells. Results shown are mean ± SD (n = 3). Significantly different (P<0.05) compared with corresponding acontrol (DMSO-treated) and bbetween groups at each dose by one-way ANOVA followed by Bonferroni's multiple comparison test. Each experiment was repeated at least twice.
Figure 7
Figure 7. Withaferin A (WA) treatment causes activation of Bak and Bax in breast cancer cells.
Immunofluorescence microscopy for active Bak and Bax in MDA-MB-231 (A), MCF-7 (B), and HMEC (C) following 24 h treatment with DMSO (control) or 2.5 µM WA. Each experiment was repeated at least twice.
Figure 8
Figure 8. Bak and Bax are required for withaferin A (WA)-induced apoptosis.
(A) Immunofluorescence microscopy for active Bak and Bax in MDA-MB-231 cells stably transfected with empty vector or vector encoding for Cu,Zn-SOD and treated for 24 h with DMSO or WA. (B) Immunoblotting for Bak and Bax using lysates from MCF-7 cells transiently transfected with a control nonspecific small interfering RNA (siRNA; lane 1) or Bax- or Bak-targeted siRNA (lane 2). (C) Histone-associated DNA fragment release into the cytosol in siRNA-transfected MCF-7 cells following 24 h treatment with DMSO (control) or the indicated concentrations of WA. Results are shown as enrichment factor relative to DMSO-treated control siRNA transfected cells (mean ± SD, n = 3). (D) Fluorescence microscopic analysis for apoptotic cells with condensed and fragmented DNA (DAPI assay) in SV40 immortalized mouse embryonic fibroblasts (MEF) derived from wild-type (WT) and Bax and Bak double knockout (DKO) mice and treated for 24 h with DMSO (control) or 5 µM WA. (E) Histone-associated DNA fragment release into the cytosol in WT and DKO treated for 24 h with DMSO (control) or the indicated concentrations of WA. Results are shown as enrichment factor relative to DMSO-treated wild-type MEF (mean ± SD, n = 3). Significantly different (P<0.05) compared with aDMSO-treated control siRNA-transfected MCF-7 cells (panel C) or DMSO-treated WT MEF (panel E), and bbetween groups at each dose by one-way ANOVA followed by Bonferroni's test. Similar results were observed in two independent experiments.

Similar articles

Cited by

References

    1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, et al. Cancer Statistics, 2008. CA Cancer J Clin. 2008;58:71–96. - PubMed
    1. Kelsey JL, Gammon MD, John EM. Reproductive factors and breast cancer. Epidemiol Rev. 1993;15:36–47. - PubMed
    1. Hulka BS, Stark AT. Breast Cancer: cause and prevention. Lancet. 1995;346:883–887. - PubMed
    1. Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst. 1998;90:1371–1388. - PubMed
    1. Land SR, Wickerham DL, Costantino JP, Ritter MW, Vogel VG, et al. Patient-reported symptoms and quality of life during treatment with tamoxifen or raloxifene for breast cancer prevention: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA. 2006;295:2742–2751. - PubMed

Publication types

MeSH terms