Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;6(8):e23443.
doi: 10.1371/journal.pone.0023443. Epub 2011 Aug 10.

Designing of highly effective complementary and mismatch siRNAs for silencing a gene

Affiliations

Designing of highly effective complementary and mismatch siRNAs for silencing a gene

Firoz Ahmed et al. PLoS One. 2011.

Abstract

In past, numerous methods have been developed for predicting efficacy of short interfering RNA (siRNA). However these methods have been developed for predicting efficacy of fully complementary siRNA against a gene. Best of author's knowledge no method has been developed for predicting efficacy of mismatch siRNA against a gene. In this study, a systematic attempt has been made to identify highly effective complementary as well as mismatch siRNAs for silencing a gene.Support vector machine (SVM) based models have been developed for predicting efficacy of siRNAs using composition, binary and hybrid pattern siRNAs. We achieved maximum correlation 0.67 between predicted and actual efficacy of siRNAs using hybrid model. All models were trained and tested on a dataset of 2182 siRNAs and performance was evaluated using five-fold cross validation techniques. The performance of our method desiRm is comparable to other well-known methods. In this study, first time attempt has been made to design mutant siRNAs (mismatch siRNAs). In this approach we mutated a given siRNA on all possible sites/positions with all possible nucleotides. Efficacy of each mutated siRNA is predicted using our method desiRm. It is well known from literature that mismatches between siRNA and target affects the silencing efficacy. Thus we have incorporated the rules derived from base mismatches experimental data to find out over all efficacy of mutated or mismatch siRNAs. Finally we developed a webserver, desiRm (http://www.imtech.res.in/raghava/desirm/) for designing highly effective siRNA for silencing a gene. This tool will be helpful to design siRNA to degrade disease isoform of heterozygous single nucleotide polymorphism gene without depleting the wild type protein.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Schematic diagram of efficacy of complementary and mismatch siRNAs against a target site.
Fully complementary siRNA has actual and predicted efficacy of 0.479 and 0.588 respectively. Single mutation at 1st position in the siRNA has predicted efficacy of 0.776 but overall efficacy due to single mismatch is 0.710 (0.776-0.066). Further mutation at 15th position in siRNA has predicted mismatch efficacy of 0.929. Base pairing is denoted by “ | ”, mismatch with “ : ”, and mutant base with small case.

References

    1. Obbard DJ, Gordon KH, Buck AH, Jiggins FM. The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci. 2009;364:99–115. - PMC - PubMed
    1. Ameres SL, Martinez J, Schroeder R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell. 2007;130:101–112. - PubMed
    1. Zhou H, Zeng X. A Three-Phase Algorithm for Computer Aided siRNA Design. Informatica. 2006;30:357–364.
    1. Huesken D, Lange J, Mickanin C, Weiler J, Asselbergs F, et al. Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol. 2005;23:995–1001. - PubMed
    1. Jia P, Shi T, Cai Y, Li Y. Demonstration of two novel methods for predicting functional siRNA efficiency. BMC Bioinformatics. 2006;7:271. - PMC - PubMed

Publication types