Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug;36(4):555-61.
doi: 10.1139/h11-052. Epub 2011 Aug 19.

Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances

Affiliations

Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances

Juan Del Coso et al. Appl Physiol Nutr Metab. 2011 Aug.

Abstract

The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography-mass spectrometry. The limit of detection (LOD) was set at 0.1 µg·mL(-1). The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg·mL(-1). Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg·mL(-1)). Triathlon (3.3 ± 2.2 µg·mL(-1)), cycling (2.6 ± 2.0 µg·mL(-1)), and rowing (1.9 ± 1.4 µg·mL(-1)) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg·mL(-1)). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg·mL(-1). Endurance sports were the disciplines showing the highest urine caffeine excretion after competition.

PubMed Disclaimer

Publication types

LinkOut - more resources