Ero1α regulates Ca(2+) fluxes at the endoplasmic reticulum-mitochondria interface (MAM)
- PMID: 21854214
- DOI: 10.1089/ars.2011.4004
Ero1α regulates Ca(2+) fluxes at the endoplasmic reticulum-mitochondria interface (MAM)
Abstract
Aims: The endoplasmic reticulum (ER) is involved in many functions, including protein folding, redox homeostasis, and Ca(2+) storage and signaling. To perform these multiple tasks, the ER is composed of distinct, specialized subregions, amongst which mitochondrial-associated ER membranes (MAM) emerge as key signaling hubs. How these multiple functions are integrated with one another in living cells remains unclear.
Results: Here we show that Ero1α, a key controller of oxidative folding and ER redox homeostasis, is enriched in MAM and regulates Ca(2+) fluxes. Downregulation of Ero1α by RNA interference inhibits mitochondrial Ca(2+) fluxes and modifies the activity of mitochondrial Ca(2+) uniporters. The overexpression of redox active Ero1α increases passive Ca(2+) efflux from the ER, lowering [Ca(2+)](ER) and mitochondrial Ca(2+) fluxes in response to IP3 agonists.
Innovation: The unexpected observation that Ca(2+) fluxes are affected by either increasing or decreasing the levels of Ero1α reveals a pivotal role for this oxidase in the early secretory compartment and implies a strict control of its amounts.
Conclusions: Taken together, our results indicate that the levels, subcellular localization, and activity of Ero1α coordinately regulate Ca(2+) and redox homeostasis and signaling in the early secretory compartment.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous