Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov;76(8):1450-64.
doi: 10.1016/j.theriogenology.2011.05.039.

Freezing-thawing induces alterations in histone H1-DNA binding and the breaking of protein-DNA disulfide bonds in boar sperm

Affiliations

Freezing-thawing induces alterations in histone H1-DNA binding and the breaking of protein-DNA disulfide bonds in boar sperm

E Flores et al. Theriogenology. 2011 Nov.

Abstract

The main aim of this work is to gain insight into the mechanisms by which freezing-thawing alters the nucleoprotein structure of boar sperm. For this purpose, the freezing-thawing-related changes of structure and location of histones-DNA domains in the boar sperm head were analyzed through Western blot and immunocytochemistry. Afterwards, it was analyzed whether freezing-thawing induced changes in tyrosine phosphorylation levels of both protamine 1 and histone H1, through Western blot analyses in samples previously subjected to immunoprecipitation. This analysis was completed with the determination of the changes induced by freezing-thawing on the overall levels of sperm-head disulfide bonds through analysis of free-cysteine radicals levels. Freezing-thawing induced significant changes in the histones-DNA structures, which were manifested in the appearance of a freezing-thawing-linked histone H1-DNA aggregate of about a 35-kDa band and in the spreading of histone H1-positive markings from the caudal area of the sperm head to more cranial zones. Freezing-thawing did not have any significant effect on the tyrosine phosphorylation levels of either protamine 1 or histone H1. However, thawed samples showed a significant (P < 0.05) increase in the free cysteine radical content (from 3.1 ± 0.5 nmol/μg protein in fresh samples to 6.7 ± 0.8 nmol/μg protein). In summary, our results suggest that freezing-thawing causes significant alterations in the nucleoprotein structure of boar sperm head by mechanism/s linked with the rupture of disulfide bonds among the DNA. These mechanisms seem to be unspecific, affecting both the protamines-DNA unions and the histones-DNA bonds in a similar way. Furthermore, results suggest that the boar-sperm nuclear structure is heterogeneous suggesting the existence of a zonated pattern, differing in their total DNA density and the compactness of the precise nucleoprotein structures present in each zone.

PubMed Disclaimer

Publication types

LinkOut - more resources