The maximal downstroke of epicardial potentials as an index of electrical activity in mouse hearts
- PMID: 21859611
- DOI: 10.1109/TBME.2011.2164075
The maximal downstroke of epicardial potentials as an index of electrical activity in mouse hearts
Abstract
The maximal upstroke of transmembrane voltage (dV(m)/dt(max)) has been used as an indirect measure of sodium current I(Na) upon activation in cardiac myocytes. However, sodium influx generates not only the upstroke of V(m), but also the downstroke of the extracellular potentials V(e) including epicardial surface potentials V(es). The purpose of this study was to evaluate the magnitude of the maximal downstroke of V(es) (|dV(es)/dt (min)|) as a global index of electrical activation, based on the relationship of dV(m)/dt(max) to I(Na). To fulfill this purpose, we examined |dV(es)/dt(min)| experimentally using isolated perfused mouse hearts and computationally using a 3-D cardiac tissue bidomain model. In experimental studies, a custom-made cylindrical "cage" array with 64 electrodes was slipped over mouse hearts to measure V(es) during hyperkalemia, ischemia, and hypoxia, which are conditions that decrease I(Na). Values of |dV(es)/dt(min)| from each electrode were normalized (|dV(es)/dt (min)|(n)) and averaged (|dV(es)/dt(min)|(na)). Results showed that |dV(es)/dt(min)|(na) decreased during hyperkalemia by 28, 59, and 79% at 8, 10, and 12 mM [K(+)](o), respectively. |dV(es)/dt(min)| also decreased by 54 and 84% 20 min after the onset of ischemia and hypoxia, respectively. In computational studies, |dV(es)/dt(min)| was compared to dV(m)/dt(max) at different levels of the maximum sodium conductance G(Na), extracellular potassium ion concentration [K(+)](o), and intracellular sodium ion concentration [Na(+)](i), which all influence levels of I(Na). Changes in |dV(es)/dt(min)|(n) were similar to dV(m)/dt (max) during alterations of G(Na), [K(+)](o), and [Na(+)](i). Our results demonstrate that |dV(es)/dt(min)|(na) is a robust global index of electrical activation for use in mouse hearts and, similar to dV(m)/dt(max), can be used to probe electrophysiological alterations reliably. The index can be readily measured and evaluated, which makes it attractive for characterization of, for instance, genetically modified mouse hearts and drug effects on cardiac tissue.
Similar articles
-
Absence of glucose transporter 4 diminishes electrical activity of mouse hearts during hypoxia.Exp Physiol. 2013 Mar;98(3):746-57. doi: 10.1113/expphysiol.2012.070235. Epub 2012 Nov 23. Exp Physiol. 2013. PMID: 23180812 Free PMC article.
-
The effect of heart rate on the membrane responsiveness of rabbit atrial muscle.Pflugers Arch. 1976 Nov 5;366(2-3):223-31. doi: 10.1007/BF00585882. Pflugers Arch. 1976. PMID: 1033524
-
[The involvement of lidocaine and tetrodotoxin-sensitive current in the generation of action potentials with low DV/DT max in the cells of the mouse sinoauricular region].Fiziol Zh (1994). 2013;59(5):31-40. Fiziol Zh (1994). 2013. PMID: 24400563 Russian.
-
Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration.Cardiovasc Res. 1997 Aug;35(2):256-72. doi: 10.1016/s0008-6363(97)00093-x. Cardiovasc Res. 1997. PMID: 9349389
-
Effects of anoxia and metabolic inhibitors on reaction of the fast sodium system.Recent Adv Stud Cardiac Struct Metab. 1976 May 26-29;11:79-83. Recent Adv Stud Cardiac Struct Metab. 1976. PMID: 1031965
Cited by
-
Absence of glucose transporter 4 diminishes electrical activity of mouse hearts during hypoxia.Exp Physiol. 2013 Mar;98(3):746-57. doi: 10.1113/expphysiol.2012.070235. Epub 2012 Nov 23. Exp Physiol. 2013. PMID: 23180812 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources