Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 9:(54):3076.
doi: 10.3791/3076.

Measuring bacterial load and immune responses in mice infected with Listeria monocytogenes

Affiliations

Measuring bacterial load and immune responses in mice infected with Listeria monocytogenes

Nancy Wang et al. J Vis Exp. .

Abstract

Listeria monocytogenes (Listeria) is a Gram-positive facultative intracellular pathogen. Mouse studies typically employ intravenous injection of Listeria, which results in systemic infection. After injection, Listeria quickly disseminates to the spleen and liver due to uptake by CD8α+ dendritic cells and Kupffer cells. Once phagocytosed, various bacterial proteins enable Listeria to escape the phagosome, survive within the cytosol, and infect neighboring cells. During the first three days of infection, different innate immune cells (e.g. monocytes, neutrophils, NK cells, dendritic cells) mediate bactericidal mechanisms that minimize Listeria proliferation. CD8+ T cells are subsequently recruited and responsible for the eventual clearance of Listeria from the host, typically within 10 days of infection. Successful clearance of Listeria from infected mice depends on the appropriate onset of host immune responses. There is a broad range of sensitivities amongst inbred mouse strains. Generally, mice with increased susceptibility to Listeria infection are less able to control bacterial proliferation, demonstrating increased bacterial load and/or delayed clearance compared to resistant mice. Genetic studies, including linkage analyses and knockout mouse strains, have identified various genes for which sequence variation affects host responses to Listeria infection. Determination and comparison of infection kinetics between different mouse strains is therefore an important method for identifying host genetic factors that contribute to immune responses against Listeria. Comparison of host responses to different Listeria strains is also an effective way to identify bacterial virulence factors that may serve as potential targets for antibiotic therapy or vaccine design. We describe here a straightforward method for measuring bacterial load (colony forming units [CFU] per tissue) and preparing single-cell suspensions of the liver and spleen for FACS analysis of immune responses in Listeria-infected mice. This method is particularly useful for initial characterization of Listeria infection in novel mouse strains, as well as comparison of immune responses between different mouse strains infected with Listeria. We use the Listeria monocytogenes EGD strain that, when cultured on blood agar, exhibits a characteristic halo zone around each colony due to β-hemolysis (Figure 1). Bacterial load and immune responses can be determined at any time-point after infection by culturing tissue homogenate on blood agar plates and preparing tissue cell suspensions for FACS analysis using the protocols described below. We would note that individuals who are immunocompromised or pregnant should not handle Listeria, and the relevant institutional biosafety committee and animal facility management should be consulted before work commences.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Wing EJ, Gregory SH. Listeria monocytogenes: clinical and experimental update. J Infect Dis. 2002;185(Suppl 1):S18–S24. - PubMed
    1. Conlan JW. Early host-pathogen interactions in the liver and spleen during systemic murine listeriosis: an overview. Immunobiology. 1999;201:178–187. - PubMed
    1. Neuenhahn M, Busch DH. Unique functions of splenic CD8alpha+ dendritic cells during infection with intracellular pathogens. Immunol Lett. 2007;114:66–72. - PubMed
    1. Cousens LP, Wing EJ. Innate defenses in the liver during Listeria infection. Immunol Rev. 2000;174:150–159. - PubMed
    1. Hamon M, Bierne H, Cossart P. Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol. 2006;4:423–434. - PubMed

Publication types