Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Mar 29;31(13):1609-22.
doi: 10.1038/onc.2011.354. Epub 2011 Aug 22.

DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer

Affiliations
Free PMC article
Review

DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer

P Lopez-Serra et al. Oncogene. .
Free PMC article

Abstract

MicroRNAs (miRNAs) are recognized as being central players in many biological processes and cellular pathways. Their roles in disease have been highlighted first by observation of their aberrant expression profiles in human tumors, and then by in vitro and in vivo functional studies in transformed cells and model organisms. One of the most commonly observed features of miRNAs in malignancies is a defect in their production. Although several causes may be associated with this phenomenon, such as upstream oncogenic/tumor-suppressor defects and alterations in the miRNA-processing machinery, epigenetic inactivation is the prime suspect. The number of miRNAs with putative growth-inhibitory functions undergoing promoter CpG island hypermethylation in human cancer is growing fast and more detailed biological studies are necessary. The recognition of miR-124a and miR-34b/c as bona fide tumor-suppressor miRNAs undergoing DNA methylation-associated silencing in a wide spectrum of human neoplasms is a good starting point to be followed by other candidate miRNAs. Most importantly, even at this early stage, the transcriptional repression of miRNAs by hypermethylation of their corresponding promoter loci seems to be a common feature of all human tumors. This will have translational consequences for the management of the disease.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The miRNA biosynthesis pathway from the nucleus to the cytosol. Ago, Argonaute protein; DGCR8, DiGeorge Syndrome Critical Region Gene-8; miRNA, microRNA; ORF, open reading frame; TAR-binding protein; UTR, untranslated region; XPO5, exportin-5; TRBP.
Figure 2
Figure 2
Mechanisms by which miRNAs regulate gene expression within a cell and in neighboring cells. Ago, Argonaute protein; ORF, open reading frame; RISC, RNA-induced silencing complex; TRBP, TAR-binding protein; UTR, untranslated region.
Figure 3
Figure 3
Aberrant DNA methylation patterns in human cancer. Heavily methylated repetitive sequences undergo hypomethylation events in transformed cells that might cause genome instability (right panel), whereas unmethylated promoter CpG islands of coding genes and miRNAs with tumor-suppressor features become hypermethylated and silenced in cancer cells (left panel).

Similar articles

Cited by

References

    1. Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, Martin-Subero JI, Cordeu L, Gárate L, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 2009;69:4443–4453. - PubMed
    1. Akao Y, Nakagawa Y, Naoe T. Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006;29:903–906. - PubMed
    1. Ando T, Yoshida T, Enomoto S, Asada K, Tatematsu M, Ichinose M, et al. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer. 2009;124:2367–2374. - PubMed
    1. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108:5003–5008. - PMC - PubMed
    1. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007;318:798–801. - PubMed

Publication types