Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;6(8):e22997.
doi: 10.1371/journal.pone.0022997. Epub 2011 Aug 10.

Staphylococcal toxic shock syndrome 2000-2006: epidemiology, clinical features, and molecular characteristics

Affiliations

Staphylococcal toxic shock syndrome 2000-2006: epidemiology, clinical features, and molecular characteristics

Aaron S DeVries et al. PLoS One. 2011.

Abstract

Introduction: Circulating strains of Staphylococcus aureus (SA) have changed in the last 30 years including the emergence of community-associated methicillin-resistant SA (MRSA). A report suggested staphylococcal toxic shock syndrome (TSS) was increasing over 2000-2003. The last population-based assessment of TSS was 1986.

Methods: Population-based active surveillance for TSS meeting the CDC definition using ICD-9 codes was conducted in the Minneapolis-St. Paul area (population 2,642,056) from 2000-2006. Medical records of potential cases were reviewed for case criteria, antimicrobial susceptibility, risk factors, and outcome. Superantigen PCR testing and PFGE were performed on available isolates from probable and confirmed cases.

Results: Of 7,491 hospitalizations that received one of the ICD-9 study codes, 61 TSS cases (33 menstrual, 28 non-menstrual) were identified. The average annual incidence per 100,000 of all, menstrual, and non-menstrual TSS was 0.52 (95% CI, 0.32-0.77), 0.69 (0.39-1.16), and 0.32 (0.12-0.67), respectively. Women 13-24 years had the highest incidence at 1.41 (0.63-2.61). No increase in incidence was observed from 2000-2006. MRSA was isolated in 1 menstrual and 3 non-menstrual cases (7% of TSS cases); 1 isolate was USA400. The superantigen gene tst-1 was identified in 20 (80%) of isolates and was more common in menstrual compared to non-menstrual isolates (89% vs. 50%, p = 0.07). Superantigen genes sea, seb and sec were found more frequently among non-menstrual compared to menstrual isolates [100% vs 25% (p = 0.4), 60% vs 0% (p<0.01), and 25% vs 13% (p = 0.5), respectively].

Discussion: TSS incidence remained stable across our surveillance period of 2000-2006 and compared to past population-based estimates in the 1980s. MRSA accounted for a small percentage of TSS cases. tst-1 continues to be the superantigen associated with the majority of menstrual cases. The CDC case definition identifies the most severe cases and has been consistently used but likely results in a substantial underestimation of the total TSS disease burden.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Flow diagram of TSS case ascertainment.
From 2000–2003 TSS cases were identified from multiple data sources including ICD-9 hospital discharge codes, cases reported to the Minnesota Unexplained Critical Illness and Death of Possible Infectious Etiology project (UNEX), and death certificate data using ICD-10 code A48.3. From 2004–2006 TSS cases were identified from only the TSS-specific ICD-9 hospital discharge code.
Figure 2
Figure 2. Annual incidence of menstrual and non-menstrual TSS across years 2000–2006.
Annual incidence of TSS across years 2000–2006 of menstrual (A) and non-menstrual (B) TSS stratified by age ≤24 and >24 years using only cases receiving the TSS specific ICD-9 code. Error bars represent 95% confidence limits. Frequentist Poisson regressions were used to calculate P-values for test of trend. Over years 2000–2006 among menstrual TSS aged ≤24 years test of trend was not significant (p = 0.22) as was non-menstrual age ≤24 years (p = 0.69) and >24 years (p = 0.40) There was a significant decreasing annual incidence over 2000–2006 in menstrual TSS aged >24 years (test of trend p = 0.02).

References

    1. Stevens FA. The occurence of Staphylococcus aureus infection with a scarlitiniform rash. JAMA. 1927;88:1957–1958.
    1. Todd J, Fishaut M, Kapral F, Welch T. Toxic-shock syndrome associated with phage-group-I Staphylococci. Lancet. 1978;2:1116–1118. - PubMed
    1. Shands KN, Schmid GP, Dan BB, Blum D, Guidotti RJ, et al. Toxic-shock syndrome in menstruating women: association with tampon use and Staphylococcus aureus and clinical features in 52 cases. N Engl J Med. 1980;303:1436–1442. - PubMed
    1. Davis JP, Chesney PJ, Wand PJ, LaVenture M. Toxic-shock syndrome: epidemiologic features, recurrence, risk factors, and prevention. N Engl J Med. 1980;303:1429–1435. - PubMed
    1. Schlievert PM, Osterholm MT, Kelly JA, Nishimura RD. Toxin and enzyme characterization of Staphylococcus aureus isolates from patients with and without toxic shock syndrome. Ann Intern Med. 1982;96:937–940. - PubMed

Publication types

MeSH terms