Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep 21;133(37):14710-26.
doi: 10.1021/ja2047232. Epub 2011 Aug 23.

Enantioselective total syntheses of (-)-palau'amine, (-)-axinellamines, and (-)-massadines

Affiliations

Enantioselective total syntheses of (-)-palau'amine, (-)-axinellamines, and (-)-massadines

Ian B Seiple et al. J Am Chem Soc. .

Abstract

Dimeric pyrrole-imidazole alkaloids represent a rich and topologically unique class of marine natural products. This full account will follow the progression of efforts that culminated in the enantioselective total syntheses of the most structurally ornate members of this family: the axinellamines, the massadines, and palau'amine. A bio-inspired approach capitalizing on the pseudo-symmetry of the members of this class is recounted, delivering a deschloro derivative of the natural product core. Next, the enantioselective synthesis of the chlorocyclopentane core featuring a scalable, catalytic, enantioselective Diels-Alder reaction of a 1-siloxydiene is outlined in detail. Finally, the successful divergent conversion of this core to each of the aforementioned natural products, and the ensuing methodological developments, are described.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Structural conformation of 20-deoxymacropalau’amine-N3 (65) based on the average of 52 interproton distances from a 100 ms ROESY spectrum
Scheme 1
Scheme 1. Biosynthesis of pyrrole-imidazole alkaloids
Scheme 2
Scheme 2. Bio-inspired retrosynthetic scheme based on an oxidative cyclization from the symmetric seco-sceptrin-N3 (16)
Scheme 3
Scheme 3. Attempt to secure the core of the pyrrole-imidazole alkaloids with an oxidative cascade from a linear precursor (16)
a Reagents and conditions: (a) Dimethyl fumarate (1.0 equiv), 1,3-dimethylbutadiene (1.0 equiv), neat, 135 °C, 1.5 h; (b) LiAlH4 (2.0 equiv), THF, 0 °C, 1 h; (c) methanesulfonyl chloride (4.0 equiv), pyridine, 0 → 23 °C, 1 h; (d) sodium azide (6.0 equiv), DMF, 100 °C, 2 h, 78% for four steps; (e) O3, MeOH, −78 °C, 15 min, then DMS (3.0 equiv), 23 °C, 20 h; (f) diisopropylethylamine (6.0 equiv), TMSOTf (4.0 equiv), 0 → 23 °C, then NBS (2.0 equiv), MeCN, THF, 0 °C, 15 min, 45% for two steps; (g) Boc-guanidine (10 equiv), DMF, 23 °C, 65 h, 14%; (h) TFA:DCM (1:2), 23 °C, 6 h, quant. THF = tetrahydrofuran, DMF = N,N-dimethylformamide, DMS = dimethylsulfide, TMSOTf = trimethylsilyl trifluoromethanesulfonate, NBS = N-bromosuccinimide, TFA = trifluoroacetic acid, DCM = dichloromethane.
Scheme 4
Scheme 4. Access to a deschloro core structure 22
a Reagents and conditions: (a) SiO2, 23 °C, 12 h, 90%; (b) 2,6-lutidine (4.0 equiv), SOCl2 (2.0 equiv), DCM, 0 °C, 1 h, 30%; (c) Boc-guanidine (7.0 equiv), THF, 55 °C, 12 h; (d) TFA:DCM (1:1), 23 °C, 1 h, 22% for two steps.
Scheme 5
Scheme 5. Revised retrosynthetic analysis of the axinellamines (9–10) and palau’amines (e.g. 13).a
a R = H or acyl-2-(4,5-dibromopyrrole).
Scheme 6
Scheme 6. Elaboration to a fully substituted cyclopentane core.a
a Reagents and conditions: (a) Dodecanethiol (4.4 equiv), n-butyllithium (4.0 equiv), THF, −78 °C → 0 °C, 18 h, 74%; (b) LiAlH4 (3.0 equiv), Et2O, 0 °C, 1 h, 86%; (c) methanesulfonyl chloride (4.0 equiv), pyridine, 0 °C → 23 °C, 1 h; (d) sodium azide (6.0 equiv), DMF, 100 °C, 11 h; (e) TBAF (1.1 equiv), THF, 23 °C, 1 h, 81% for three steps; (f) NaH (2.0 equiv), PMBCl (1.1 equiv), TBAI (0.1 equiv), DMF, 0 °C → 23 °C, 2 h; (g) O3, MeOH, −78 °C, 1 h then DMS (3.0 equiv), 23 °C, 16 h, 86% for two steps; (h) diisopropylethylamine (6.0 equiv), TMSOTf (4.0 equiv), 0 °C → 23 °C, 1.5 h, then NBS (2.0 equiv), THF, MeCN, 0 °C, 15 min, then SiO2, 50 °C, 16 h, 66%. TBAF = tetra-n-butylammonium fluoride, PMBCl = p-methoxybenzyl chloride, TBAI = tetra-n-butylammonium iodide.
Scheme 7
Scheme 7. Roadblocks en route to the trihalogenated enone 26.a
a Reagents and conditions: (a) LiCl (3.3 equiv), DMF, 23 °C, 1.5 h; (b) TFA:DCM (1:9), anisole (2.0 equiv), 0 °C, 1 h, 72% for two steps; (c) NaOH (1.1 equiv), THF, H2O, 0 °C, 45 min, 75%; (d) Burgess reagent (5.0 equiv), benzene, 50 °C, 6 h, 95%; (e) 2,6-lutidine (3.0 equiv), SOCl2 (2.0 equiv), DCM, 0 °C, 2 h, 78%; (f) SO2Cl2 (2.0 equiv), 2,6-lutidine (3.0 equiv), DCM, 0 °C, 30 min, 60%.
Scheme 8
Scheme 8. Elaboration of enone 22 to the fully substituted core 20.a
a Reagents and conditions: (a) NaBH4 (1.0 equiv), CeCl3 • 7 H2O (0.5 equiv), MeOH, 0 °C, 15 min; (b) N,N’-bis-Boc guanidine (1.2 equiv), DBU (1.2 equiv), DMF, −20 °C to 0 °C, 4 h, 55% for two steps; (c) IBX (2.0 equiv), benzene, 83 °C, 16 h, 70%, 1.3:1 57:56; (d) N-Boc guanidine (6.0 equiv), DMF or MeCN, 23 °C, 24–48 h, 5–20%; (e) NaN(CHO)2 (1.5 equiv), TBAI (0.1 equiv), THF, 23 °C, 3 h; (f) TFA:H2O (1:1), 50 °C, 24 h, 69% for two steps, 36% 25, 33% 16-epi-25; (g) H2NCN (40 equiv), pH 5, brine, 70 °C, 4 h, 71%. DBU = 1,8-diazabicycloundec-7-ene, IBX = o-iodoxybenzoic acid.
Scheme 9
Scheme 9. Failed biomimetic approaches to the pyrrole-imidazole alkaloids.a
a Reagents and conditions: (a) PtO2 (0.1 equiv), H2 (1 atm), TFA:H2O (1:9), 23 °C, 2 h; (b) (trichloroacetyl)pyrrole 59 (3.0 equiv), diisopropylethylamine (3.0 equiv), DMF, 40 °C, 3 h, 26% + 17% mono-acylated product; (c) NBS (1.0 equiv), MeOH, −78 °C, 26 h; (d) neat TFA, 30 °C, 24 h, 34%.
Scheme 10
Scheme 10. Non-biomimetic retrosynthesis of the pyrrole-imidazole alkaloids to a common precursor (25)
Scheme 11
Scheme 11. Model system for the oxidation of spiro-annulated imidazolines.a
a Reactions monitored by HPLC-MS and 1H-NMR comparison to known standards of 79 and 80.
Scheme 12
Scheme 12. Enantioselective total synthesis of (−)-axinellamine A (9) and (−)-axinellamine B (10).a
a Reagents and conditions: (a) DMDO (0.35 mL of 0.09 M solution), H2O, 0 °C, 15 min; (b) TFA:DCM (2:1), 23 °C, 17 h; (c) silver(II) picolinate (3.5 equiv), TFA:H2O (1:9), 23 °C, 30 min, 43% (3:4 68α:68β); (d) 1,3-propanedithiol (15–20 equiv), Et3N (11–14 equiv), MeOH, 23 °C, 2 h; (e) (trichloroacetyl)pyrrole 59 (3.0 equiv), diisopropylethylamine (3.0 equiv), DMF, 45 °C, 6–11 h; 9 = 45%, 10 = 24%. DMDO = dimethyldioxirane.
Scheme 13
Scheme 13. Attempts to secure both the 2-aminoimidazole and the C20 hemiaminal en route to the massadines (11–12).a
a Reagents and conditions: (a) silver(II) picolinate (2.5 equiv), TFA:H2O (1:9), 23 °C, 30 min, 58%. b TFA:H2O (2:1), 50 °C, 20 h, 65%.
Scheme 14
Scheme 14. Total synthesis of (−)-massadine (11) and (−)-massadine chloride (12).a
a Reagents and conditions: (a) silver(II) picolinate (2.5 equiv), TFA:H2O (1:9), 23 °C, 30 min, 69%; (b) H2NCN (40 equiv), pH 5, brine, 70 °C, 4 h, 65%; (c) DMDO (1.3 equiv), TFA:H2O (1:9), 0 °C, 1 h; (d) neat TFA, 23 °C, 3 h, 71% (1:3.7 d.r. at C6/C10); (e) PtO2 (0.3 equiv), H2 (1 atm), TFA:H2O (1:19), 1 h, 23 °C; (f) (trichloroacetyl)pyrrole 59 (16 equiv), diisopropylethylamine (16 equiv), DMF, 23 °C, 14 h, 60% from 70α (2:1 9:8), 55% from 70β (4:1 88:89); (g) H2O, 60 °C, 4 h, quant.
Scheme 15
Scheme 15. Initial investigations into the generation of an N-coupled pyrrole.a
a 90 (1.0 equiv), TFA:H2O, 60 °C, 24 h, 82%. b 90 (1.0 equiv), Neat pyrrole, 60 °C, 2 h, 71%. c 90 (1.0 equiv), AcOH (3.0 equiv), pyrrolidine (3.0 equiv), 40 °C, 3 h, 48%. d 90 (1.0 equiv), AcOH (3.0 equiv), benzylamine (3.0 equiv), 40 °C, 3 h, 72%.
Scheme 16
Scheme 16. Synthesis of deoxypalau’amine azide 66.a
a Reagents and conditions: (a) TFAA:TFA (1:1), 1 h, then Br2 (2.0 equiv), 1 h, then TFA:H2O (1:1), 1 h, 38 °C, 58% (b) AcOH (3.0 equiv), 97 (3.0 equiv), THF, 38 °C, 6 h; (c) TFA:DCM (1:30 to 1:1), 23 °C, 12 h, 48%; (d) EDC (1.5 equiv), DMAP (2.0 equiv), thiol 99 (1.2 equiv), MeCN, 23 °C, 2 h, 48%; (e) DABCO (7.5 equiv), THF, 60 °C, 6 h, 20%; (f) neat TFA, 70 °C, 23 h, 38% (ca. 75% conversion). TFAA = trifluoroacetic anhydride, EDC = 3-(ethyliminomethyleneamino)-N,N-dimethylpropan-1-amine, DMAP = 4-(N,N-dimethylamino)pyridine, DABCO = 1,4-diazabicyclo[2.2.2]octane.
Scheme 17
Scheme 17. Enantioselective total synthesis of (−)-palau’amine (13).a
a Reagents and Conditions: (a) TFAA:TFA (1:1), 1 h, then Br2 (2.0 equiv), 1 h, then TFA:H2O (1:1), 38 °C, 1 h, 54%; (b) AcOH (3.0 equiv), 97 (3.0 equiv), THF, 38 °C, 6 h, then TFA:DCM (1:30 to 1:1), 23 °C, 12 h, 44%; (c) Pd(OAc)2 (1.6 equiv), H2 (1 atm), TFA:H2O (1:9), 23 °C; (d) EDC (3.0 equiv), DMF, 23 °C, 3 h; (e) neat TFA, 70 °C, 24 h, 17% for three steps.

Similar articles

Cited by

References

    1. Walker RP, Faulkner DJ, Van ED, Clardy J. J Am Chem Soc. 1981;103:6772–6773.
    1. Keifer PA, Koker MES, Schwartz RE, Hughes RG, Jr, Rittschof D, Rinehart KL. 26th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1986.
    2. Rinehart KL. Pure Appl Chem. 1989;61:525–528.
    3. Kobayashi J, Tsuda M, Murayama T, Nakamura H, Ohizumi Y, Ishibashi M, Iwamura M, Ohta T, Nozoe S. Tetrahedron. 1990;46:5579–5586.
    4. Keifer PA, Schwartz RE, Koker MES, Hughes RG, Jr, Rittschof D, Rinehart KL. J Org Chem. 1991;56:2965–2975.
    5. Williams DH, Faulkner DJ. Tetrahedron. 1996;52:5381–5390.
    1. Kinnel RB, Gehrken HP, Scheuer PJ. J Am Chem Soc. 1993;115:3376–3377.
    2. Kinnel RB, Gehrken HP, Swali R, Skoropowski G, Scheuer PJ. J Org Chem. 1998;63:3281–3286.
    1. Kato T, Shizuri Y, Izumida H, Yokoyama A, Endo M. Tetrahedron Lett. 1995;36:2133–2136.
    2. Kobayashi Ji, Suzuki M, Tsuda M. Tetrahedron. 1997;53:15681–15684.
    1. Urban S, Leone PdA, Carroll AR, Fechner GA, Smith J, Hooper JNA, Quinn RJ. J Org Chem. 1999;64:731–735.These “axinellamines” should not be confused with the structurally unrelated natural products that share their name: Bascombe KC, Peter SR, Tinto WF, Bissada SM, McLean S, Reynolds WF. Heterocycles. 1998;48:1461–1464.

Publication types

MeSH terms