Diffusion-influenced ligand binding to buried sites in macromolecules and transmembrane channels
- PMID: 21861586
- PMCID: PMC3172035
- DOI: 10.1063/1.3609973
Diffusion-influenced ligand binding to buried sites in macromolecules and transmembrane channels
Abstract
We consider diffusion-influenced binding to a buried binding site that is connected to the surface by a narrow tunnel. Under the single assumption of an equilibrium distribution of ligands over the tunnel cross section, we reduce the calculation of the time-dependent rate coefficient to the solution of a one-dimensional diffusion equation with appropriate boundary conditions. We obtain a simple analytical expression for the steady-state rate that depends on the potential of mean force in the tunnel and the diffusion-controlled rate of binding to the tunnel entrance. Potential applications of our theory include substrate binding to a buried active site of an enzyme and permeant ion binding to an internal site in a transmembrane channel.
© 2011 American Institute of Physics
Figures


Similar articles
-
Theory and simulation of diffusion-influenced, stochastically gated ligand binding to buried sites.J Chem Phys. 2011 Oct 14;135(14):145101. doi: 10.1063/1.3645000. J Chem Phys. 2011. PMID: 22010732 Free PMC article.
-
Diffusion-controlled bimolecular reaction rates. The effect of rotational diffusion and orientation constraints.Biophys J. 1981 Dec;36(3):697-714. doi: 10.1016/S0006-3495(81)84759-5. Biophys J. 1981. PMID: 7326330 Free PMC article.
-
Correcting binding parameters for interacting ligand-lattice systems.Phys Rev E. 2017 Jul;96(1-1):012417. doi: 10.1103/PhysRevE.96.012417. Epub 2017 Jul 31. Phys Rev E. 2017. PMID: 29347100
-
Computation of Rate Constants for Diffusion of Small Ligands to and from Buried Protein Active Sites.Methods Enzymol. 2016;578:299-326. doi: 10.1016/bs.mie.2016.05.039. Epub 2016 Jun 27. Methods Enzymol. 2016. PMID: 27497172 Review.
-
TRP Channels, Conformational Flexibility, and the Lipid Membrane.J Membr Biol. 2020 Aug;253(4):299-308. doi: 10.1007/s00232-020-00127-0. Epub 2020 Jun 29. J Membr Biol. 2020. PMID: 32601711 Review. No abstract available.
Cited by
-
Effective diffusivity of a Brownian particle in a two-dimensional periodic channel of abruptly alternating width.Phys Rev E. 2021 Jun;103(6-1):062106. doi: 10.1103/PhysRevE.103.062106. Phys Rev E. 2021. PMID: 34271681 Free PMC article.
-
Localized potential well vs binding site: Mapping solute dynamics in a membrane channel onto one-dimensional description.J Chem Phys. 2021 Mar 21;154(11):111101. doi: 10.1063/5.0044044. J Chem Phys. 2021. PMID: 33752368 Free PMC article.
-
Structural and dynamic basis of substrate permissiveness in hydroxycinnamoyltransferase (HCT).PLoS Comput Biol. 2018 Oct 26;14(10):e1006511. doi: 10.1371/journal.pcbi.1006511. eCollection 2018 Oct. PLoS Comput Biol. 2018. PMID: 30365487 Free PMC article.
-
Finite Element Estimation of Protein-Ligand Association Rates with Post-Encounter Effects: Applications to Calcium binding in Troponin C and SERCA.Comput Sci Discov. 2012 Oct 31;5:014015. doi: 10.1088/1749-4699/5/1/014015. Comput Sci Discov. 2012. PMID: 23293662 Free PMC article.
-
Blocker escape kinetics from a membrane channel analyzed by mapping blocker diffusive dynamics onto a two-site model.J Chem Phys. 2019 May 21;150(19):194103. doi: 10.1063/1.5095594. J Chem Phys. 2019. PMID: 31117787 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources