Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec;141(6):2218-2227.e5.
doi: 10.1053/j.gastro.2011.08.009. Epub 2011 Aug 22.

c-Met is a marker of pancreatic cancer stem cells and therapeutic target

Affiliations

c-Met is a marker of pancreatic cancer stem cells and therapeutic target

Chenwei Li et al. Gastroenterology. 2011 Dec.

Abstract

Background & aims: Growth of many different tumor types requires a population of self-renewing cancer stem cells (CSCs). c-Met is a marker of normal mouse pancreatic stem and progenitor cells; we investigated whether it is also a marker of human pancreatic CSCs that might be developed as a therapeutic target.

Methods: We studied growth of primary human pancreatic adenocarcinoma in NOD SCID mice. The self-renewal capability of pancreatic cancer cells that expressed high levels of c-Met (c-Met(high)) was assessed using in vitro sphere assays and compared with those that were c-Met negative or expressed low levels of c-Met. The tumorigenicity of c-Met(high) pancreatic cancer cells was evaluated in NOD SCID mice.

Results: c-Met(high) cells readily formed spheres, whereas c-Met-negative cells did not. Use of the c-Met inhibitor XL184 or c-Met knockdown with small hairpin RNAs significantly inhibited tumor sphere formation. c-Met(high) cells had increased tumorigenic potential in mice; those that expressed c-Met and CD44 (0.5%-5% of the pancreatic cancer cells) had the capability for self-renewal and the highest tumorigenic potential of all cell populations studied. In pancreatic tumors established in NOD SCID mice, c-Met inhibitors slowed tumor growth and reduced the population of CSCs when given alone or in combination with gemcitabine. Administration of XL184 for 2 weeks after cardiac injection of cancer cells prevented the development of metastases.

Conclusions: c-Met is a new marker for pancreatic CSCs. It is required for growth and metastasis of pancreatic tumors in mice and is a therapeutic target for pancreatic cancer.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources