Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep;345(3):415-23.
doi: 10.1007/s00441-011-1223-5. Epub 2011 Aug 25.

In vitro expansion of human adipose-derived stem cells in a spinner culture system using human extracellular matrix powders

Affiliations

In vitro expansion of human adipose-derived stem cells in a spinner culture system using human extracellular matrix powders

Ji Suk Choi et al. Cell Tissue Res. 2011 Sep.

Abstract

Stem cell therapy requires large numbers of stem cells to replace damaged tissues, but only limited numbers of stem cells can be harvested from a single patient. To obtain large quantities of stem cells with differentiation potential, we explored a spinner culture system using human extracellular matrix (hECM) powders. The hECM was extracted from adipose tissue and fabricated into powders. Human adipose-derived stem cells (hASCs) were isolated, seeded on hECM powders, and cultivated in a spinner flask. The 3-D culture system, using hECM powders, was highly effective for promoting cell proliferation. The number of hASCs in the 3-D culture system significantly increased for 10 days, resulting in an approximately 10-fold expansion, whereas a traditional 2-D culture system showed just a 2.8-fold expansion. Surface markers, transcriptional factors, and differentiation potential of hASCs were assayed to identify the characteristics of proliferated cells in 3-D culture system. The hASCs expressed the pluripotency markers, Oct-4 and Sox-2 during 3-D culture and retained their capacity to differentiate into adipogenic, osteogenic, and chondrogenic lineages. These findings demonstrate that the 3-D culture systems using hECM powders provide an efficient in vitro environment for stem cell proliferation, and could act as stem cell delivery carriers for autologous tissue engineering and cell therapy.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources