Details of the female and male pathway of the Keimbahn determined by enzyme histochemical and autoradiographic studies
- PMID: 2186724
Details of the female and male pathway of the Keimbahn determined by enzyme histochemical and autoradiographic studies
Abstract
Autoradiographic studies and the use of enzyme histochemistry have revealed that early germ line cells (female and male PGC, oogonia, prediplotene oocytes and prospermatogonia) as well as the more advanced germ cells (diplotene oocytes, spermatogonia, spermatocytes and spermatids) show specific patterns of their DNA and RNA synthesis and their enzymatic equipment. The female and male germ lines show similar kinetics up to the arise of oocytes and T prospermatogonia (T for transitional), the final products of a first limited multiplication process of primitive gonia. In former studies we supposed that oocytes and T prospermatogonia are the first exponents of the female and male pathway of the germ line (Hilscher and Hilscher, 1989a). Recently, it could be shown--using the reverse PLM method in slides of plastic embedded material--that the first differences between female and male GC can already be stated at the end of the first proliferation wave of oogonia and multiplying prospermatogonia; that means even before the existence of oocytes and T prospermatogonia (Hilscher and Hilscher, 1989b). Oogonia and M prospermatogonia (M for multiplying) are equipped both with only one active X chromosome. While oocytes traverse the prediplotene stages of meiotic prophase T prospermatogonia prepare for a second extensive proliferation process: spermatogenesis. Oocytes in meiosis are provided with two active X chromosomes, T prospermatogonia possess only one, and the presence of the Y chromosome is not vital for them. However, the Y chromosome is required for the normal course of spermatogenesis characterized by a stock of stem cells, that are responsible for the continuous production of male gamets. The mammalian oocyte--similar as that of insects and amphibia but to a lower degree--acts as pre-embryo.
Publication types
MeSH terms
LinkOut - more resources
Miscellaneous