Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep;39(5):587-93.
doi: 10.1515/jpm.2011.063. Epub 2011 Aug 26.

Energy metabolism in umbilical endothelial cells from preterm and term neonates

Affiliations

Energy metabolism in umbilical endothelial cells from preterm and term neonates

Sabine Illsinger et al. J Perinat Med. 2011 Sep.

Abstract

Aim: The aim of this study was to investigate the impact of gestational age on energy metabolism in human umbilical vein endothelial cells (HUVECs) of preterm and term neonates.

Methods: Activities of respiratory chain (RC) complexes I-V, citrate synthase (CS), overall mitochondrial fatty acid oxidation (FAO), carnitine palmitoyltransferase 2 (CPT2), glycolytic enzymes as well as energy-rich phosphates in HUVECs from uncomplicated term and preterm pregnancies were measured. Neonatal acylcarnitine profiles were analyzed postpartum.

Results: Activities of RC complexes II+III, IV, V, and CS were higher in HUVECs from immature pregnancies. Overall FAO did not change, whereas CPT2 activity was higher in term neonates. RC complexes II-V and CS correlated inversely to gestational age, as well as CPT2 activity within the term cohort. Phosphofructokinase activity increased with maturation; lactate dehydrogenase and hexokinase as well as energy-rich phosphates remained constant. In blood, long-chain acylcarnitines were higher in term neonates.

Conclusions: Gestational age-dependent differences of energy-providing pathways in HUVECs were shown. Alterations of RC complexes with gestational age may be an adaptive process to cope with metabolic stress during birth; reduced oxidative phosphorylation and high glycolytic activity make HUVECs less susceptible to peripartum hypoxic damage. We hypothesize that HUVECs of premature neonates are metabolically maladapted to birth, which may be responsible for perinatal complications.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources