Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 25:11:377.
doi: 10.1186/1471-2407-11-377.

A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis

Affiliations

A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis

Robert K Dearth et al. BMC Cancer. .

Abstract

Background: Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth.

Methods: We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm(3). For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice.

Results: TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands.

Conclusion: Using the first transgenic animal model to elevate circulating levels of IGF-I to those comparable to women at increased risk of breast cancer, we showed that moderately high levels of systemic IGF-I have no effect on pubertal mammary gland development, initiating mammary tumorigenesis or promoting ErbB2 driven mammary carcinogenesis. Our work suggests that ErbB2-induced mammary tumorigenesis is independent of the normal variation in circulating levels of IGF-I.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Liver specific transgene overexpression of IGF-I results in increased levels of circulating IGF-I and increased body weight. A.) Overexpression of liver IGF-I (black bar) resulted in a significant (p < 0.01) increase in female serum levels of IGF-I measured at 6 weeks of age compared to mice without the TTR-IGF-I transgene (white bar). B.) Females expressing the IGF-I transgene exhibited significantly (p < 0.05) larger body weights at 7, 10-12 weeks of age due to increased circulating IGF-I compared to wt/ErbB2 only controls. No transgene = wt + ErbB2 only females; IGF-I Transgene = TTR-IGF-I transgenic + TTR-IGF-I-ErbB2 bigenic females. N for each group is represented within their respective bars. N = 30 animals per group for weight. ** p < 0.01; * p < 0.05.
Figure 2
Figure 2
Increased circulating levels of IGF-I had no effect on pubertal mammary gland growth. Representative whole mounts of wild type (wt) and IGF-I transgenic (TTR-IGF-I) mammary glands at 4 wks (top 2 panels), 6 wks (middle 2 panels), and 9 wks of age (bottom 2 panels). N = 20 per group at 4 wks of age; N = 4 for WT and N = 7 for TG at 6 wks of age; N = 7 for WT and N = 8 for TG at 9 wks of age. WT = wild type and TG = TTR-IGF-I.
Figure 3
Figure 3
Increased levels of circulating IGF-I does not initiate mammary tumorigenesis. A.) Kaplan-Meier tumor curve illustrating the percent of animals without mammary gland tumors vs. the day tumors were first palpated. Increased IGF-I had no effect on ErbB2 initiated mammary tumorigenesis (p = 0.59). Additionally, the moderate increase in circulating IGF-I did not induced mammary tumors in females expressing only the IGF-I transgene (purple) compared to controls (maroon line). B.) Increased circulating levels on IGF-I resulted in significantly higher (p < 0.05) IGF-I protein levels in tumors from bigenic females compared to tumors in ErbB2 transgenics (right panel). Middle panel shows IGF-I protein levels measured in contralateral normal mammary glands from these same bigenic and ErbB2 transgenic females. Left panel shows a significant increase (p < 0.05) in serum IGF-I in these same bigenic females compared to ErbB2 transgenics. Bars indicate the mean (±SEM) serum or protein levels of IGF-I assayed by ELISA. N = indicated with bars; MG = Mammary Gland; ErbB2 = ErbB2 transgenic only; Bigenic = TTR-IGF-I-ErbB2; MTTF (mean time to tumor formation) = weeks/days/months; * = p < 0.05.
Figure 4
Figure 4
Increased circulating IGF-I does not alter growth in ErbB2-induced mammary gland turmors. Graphs plotting individual tumor growth curves for ErbB2 (left) and bigenic (right) females. Statistical analysis revealed that increased circulating levels of IGF-I (right) had no significant (p = 0.23) affect on mammary tumor growth compared to ErbB2 only induced mammary tumors. N = 16 for ErbB2 group and 15 for TTR-IGF-I-ErbB2 bigenic group.
Figure 5
Figure 5
Increased levels of circulating IGF-I have no effect on tumor type or mammary gland signaling. A.) Representative H&E staining of mammary tumors promoted by MMTV-ErbB2 (top) or TTR-IGF-I-ErbB2 bigenic (bigenic-bottom). Both groups had similar tumor phenotypes which were predominantly adenocarcinomas. B.) Representative immunoblot of phosphorylated (p) and total (T) AKT and Erk ½ signaling in normal mammary glands (M) and tumors (T). *** = p < 0.001; Magnification: 40 ×. C = representative wild type females; I = representative TTR-IGF-I transgenic females

Similar articles

Cited by

References

    1. Sachdev D, Yee D. Inhibitors of insulin-like growth factor signaling: a therapeutic approach for breast cancer. J Mammary Gland Biol Neoplasia. 2006;11:27–39. doi: 10.1007/s10911-006-9010-8. - DOI - PubMed
    1. Lann D, LeRoith D. The role of endocrine insulin-like growth factor-I and insulin in breast cancer. J Mammary Gland Biol Neoplasia. 2008;13:371–379. doi: 10.1007/s10911-008-9100-x. - DOI - PubMed
    1. Renehan AG, Harvie M, Howell A. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and breast cancer risk: eight years on. Endocr Relat Cancer. 2006;13:273–278. doi: 10.1677/erc.1.01219. - DOI - PubMed
    1. Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ. Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1998;7:1133–1144. - PubMed
    1. Byrne C, Hankinson SE, Pollak M, Willett WC, Colditz GA, Speizer FE. Insulin-like growth factors and mammographic density. Growth Horm IGF Res. 2000;10(Suppl A):S24–25. - PubMed

Publication types

MeSH terms

Substances