Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 May 1;733(1-2):58-60.
doi: 10.1016/j.mrfmmm.2011.08.001. Epub 2011 Aug 17.

Biotin requirements for DNA damage prevention

Affiliations
Review

Biotin requirements for DNA damage prevention

Janos Zempleni et al. Mutat Res. .

Abstract

Biotin serves as a covalently bound coenzyme in five human carboxylases; biotin is also attached to histones H2A, H3, and H4, although the abundance of biotinylated histones is low. Biotinylation of both carboxylases and histones is catalyzed by holocarboxylase synthetase. Human biotin requirements are unknown. Recommendations for adequate intake of biotin are based on the typical intake of biotin in an apparently healthy population, which is only a crude estimate of the true intake due to analytical problems. Importantly, intake recommendations do not take into account possible effects of biotin deficiency on impairing genome stability. Recent studies suggest that biotin deficiency causes de-repression of long terminal repeats, thereby causing genome instability. While it was originally proposed that these effects are caused by loss of biotinylated histones, more recent evidence suggests a more immediate role of holocarboxylase synthetase in forming multiprotein complexes in chromatin that are important for gene repression. Holocarboxylase synthetase appears to interact physically with the methyl-CpG-binding domain protein 2 and, perhaps, histone methyl transferases, thereby creating epigenetic synergies between biotinylation and methylation events. These observations might offer a mechanistic explanation for some of the birth defects seen in biotin-deficient animal models.

PubMed Disclaimer

Conflict of interest statement

8. Conflict of interest statement

The authors declare that there are no conflicts of interest.

Similar articles

Cited by

References

    1. Suzuki Y, Aoki Y, Ishida Y, Chiba Y, Iwamatsu A, Kishino T, Niikawa N, Matsubara Y, Narisawa K. Isolation and characterization of mutations in the human holocarboxylase synthetase cDNA. Nat Genet. 1994;8:122–128. - PubMed
    1. Campeau E, Gravel RA. Expression in Escherichia coli of N- and C-terminally deleted human holocarboxylase synthetase, Influence of the N-terminus on biotinylation and identification of a minimum functional protein. J Biol Chem. 2001;276:12310–12316. - PubMed
    1. Wolf B. Disorders of Biotin Metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill; New York, NY: 2001. pp. 3935–3962.
    1. Zempleni J, Wijeratne SS, Hassan YI. Biotin. Biofactors. 2009;35:36–46. - PMC - PubMed
    1. Wolf B, Heard GS. Biotinidase deficiency. In: Barness L, Oski F, editors. Advances in Pediatrics. Medical Book Publishers; Chicago, IL: 1991. pp. 1–21. - PubMed

Publication types