Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011:763:355-67.
doi: 10.1007/978-1-61779-191-8_24.

Size-selective and in vitro assessment of inner blood retina barrier permeability

Affiliations

Size-selective and in vitro assessment of inner blood retina barrier permeability

Matthew Campbell et al. Methods Mol Biol. 2011.

Abstract

Assessment of tight junction integrity in vitro is fundamental when studying molecular processes that may be implicated in barrier dysfunction. At the blood brain and inner blood retina barrier (BBB and iBRB, respectively) adjacent endothelial cells lining the microvasculature have been shown to have very low rates of fluid phase transcytosis and high electrical resistances, due in part to the expression of tight junction proteins at the apical periphery of these cells. While these high electrical resistances are difficult to achieve in vitro, owing to complex interactions of endothelial cells in vivo with astrocytes and pericytes, it is possible to make an assessment of paracellular permeability when cells are analysed on a number of different fronts. In this regard, we will outline here a method for determining trans-endothelial electrical resistance, tracer molecule diffusion, and tight junction protein localization in primary cultures of bovine retinal microvascular endothelial cells. This system allows for the screening of a wide range of pro- and anti-angiogenic molecules in an in vitro model of the iBRB and can accurately assess the role individual tight junction proteins play in maintaining tight junction integrity in response to various cell stimuli.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources