Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jan;69(2):191-201.
doi: 10.1007/s00018-011-0804-5. Epub 2011 Aug 30.

Spectrin-based skeleton as an actor in cell signaling

Affiliations
Review

Spectrin-based skeleton as an actor in cell signaling

B Machnicka et al. Cell Mol Life Sci. 2012 Jan.

Abstract

This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
A model of the human red cell membrane. The spectrin-actin interaction is modulated by accessory proteins such as protein 4.1, together with dematin, adducin, tropomyosin and tropomodulin. Their functions are to stabilize the actin-spectrin complex, to maintain actin filament length (adducin acts as a capping protein), and to bind the spectrin-based network to the transmembrane proteins (the glycophorin C, the anion exchanger AE1) via adapter proteins (protein p55 and protein 4.2). Another major binding site to membrane is mediated via ankyrin, which binds to β-spectrin and the anion exchanger AE1. The Rh/RhAG-ankyrin complex can be also a link between the red cell membrane and the spectrin-based skeleton. Spectrins also interact directly with phospholipids such as phosphatidylserine and phosphatidylethanolamine, membrane components actively confined to the inner leaflet of the lipid bilayer. The aminophospholipid-binding sites in β-spectrin are localized in close proximity to the attachment sites for both ankyrin and 4.1, the proteins engaged in spectrin links to the membrane. AE1 anion exchanger, GPA glycophorin A, GPB glycophorin B, GPC glycophorin C, GLUT 1 glucose transporter 1, Rh rhesus factor, RhAG Rh-associated glycoprotein

References

    1. Bloch RJ, Morrow JS. An unusual beta-spectrin associated with clustered acetylcholine receptors. J Cell Biol. 1989;108:481–493. - PMC - PubMed
    1. Beck KA, Buchanan JA, Malhotra V, Nelson WJ. Golgi spectrin: identification of an erythroid beta-spectrin homolog associated with the Golgi complex. J Cell Biol. 1994;127:707–723. - PMC - PubMed
    1. Devarajan P, Stabach PR, Mann AS, Ardito T, Kashgarian M, et al. Identification of a small cytoplasmic ankyrin (AnkG119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus. J Cell Biol. 1996;133:819–830. - PMC - PubMed
    1. Cianci CD, Zhang Z, Pradhan D, Morrow JS. Brain and muscle express a unique alternative transcript of alphaII spectrin. Biochemistry. 1999;38:15721–15730. - PubMed
    1. Moon RT, McMahon AP. Generation of diversity in nonerythroid spectrins. Multiple polypeptides are predicted by sequence analysis of cDNAs encompassing the coding region of human nonerythroid alpha-spectrin. J Biol Chem. 1990;265:4427–4433. - PubMed

LinkOut - more resources