Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990;8(3):293-303.
doi: 10.1016/0891-5849(90)90077-v.

Oxidative muscular injury and its relevance to hyperthyroidism

Affiliations
Review

Oxidative muscular injury and its relevance to hyperthyroidism

K Asayama et al. Free Radic Biol Med. 1990.

Abstract

In experimental hyperthyroidism, acceleration of lipid peroxidation occurs in heart and slow-oxidative muscles, suggesting the contribution of reactive oxygen species to the muscular injury caused by thyroid hormones. This article reviews various models of oxidative muscular injury and considers the relevance of the accompanying metabolic derangements to thyrotoxic myopathy and cardiomyopathy, which are the major complications of hyperthyroidism. The muscular injury models in which reactive oxygen species are supposed to play a role are ischemia/reperfusion syndrome, exercise-induced myopathy, heart and skeletal muscle diseases related to the nutritional deficiency of selenium and vitamin E and related disorders, and genetic muscular dystrophies. These models provide evidence that mitochondrial function and the glutathione-dependent antioxidant system are important for the maintenance of the structural and functional integrity of muscular tissues. Thyroid hormones have a profound effect on mitochondrial oxidative activity, synthesis and degradation of proteins and vitamin E, the sensitivity of the tissues to catecholamine, the differentiation of muscle fibers, and the levels of antioxidant enzymes. The large volume of circumstantial evidence presented here indicates that hyperthyroid muscular tissues undergo several biochemical changes that predispose them to free radical-mediated injury.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources