Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar;107(3):457-63.
doi: 10.1093/oxfordjournals.jbchem.a123067.

Isolation of a yeast gene, SRH1, that encodes a homologue of the 54K subunit of mammalian signal recognition particle

Affiliations
Free article

Isolation of a yeast gene, SRH1, that encodes a homologue of the 54K subunit of mammalian signal recognition particle

Y Amaya et al. J Biochem. 1990 Mar.
Free article

Abstract

A 1.7 kilobase HindIII fragment of Saccharomyces cerevisiae DNA was cloned by cross-hybridization with the Escherichia coli secY gene. The complete nucleotide sequence of the 2.6 kb fragment of the yeast genomic DNA containing the cross-hybridizing HindIII fragment was determined. The sequence showed no apparent similarity with that of the E. coli secY gene with the exception of a completely matched sequence of 21 bp, but it contained a 1,623 nucleotide open reading frame coding for a protein of 541 amino acids with a calculated Mr of 59,600. The N-terminal portion of 303 residues of the predicted sequence was homologous to the cytosolic domain of the alpha-subunit of the signal recognition particle receptor (SR alpha), including consensus sequence elements for a GTP binding site, whereas the C-terminal portion of 238 residues had an unusual methionine-rich domain containing several repetitive sequences. An mRNA of 2.0 kb was detected on Northern blotting analysis. The predicted sequence was 48% identical with the reported sequences of the 54K subunit of the mammalian signal recognition particle (SRP54) (Romisch K. et al. (1989) Nature 340, 478-483; Bernstein, H.D. et al. (1989) Nature 340, 482-486). We designated this gene as SRH1 (SRP54 homologue). Gene disruption experiments showed that the SRH1 gene product is essential for cell growth.

PubMed Disclaimer

MeSH terms

Associated data