Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011:206:13-37.
doi: 10.1007/978-3-642-21631-2_2.

The biology of HDAC in cancer: the nuclear and epigenetic components

Affiliations
Review

The biology of HDAC in cancer: the nuclear and epigenetic components

Astrid Hagelkruys et al. Handb Exp Pharmacol. 2011.

Abstract

Traditionally, cancer has been regarded to originate from genetic alterations such as mutations, deletions, rearrangements as well as gene amplifications, leading to abnormal expression of tumor suppressor genes and oncogenes. An increasing body of evidence indicates that in addition to changes in DNA sequence, epigenetic alterations contribute to cancer initiation and progression. In contrast to genetic mutations, epigenetic changes are reversible and therefore an attractive target for cancer therapy. Many epi-drugs such as histone deacetylase (HDAC) inhibitors showed anticancer activity in cell culture and animal models of carcinogenesis. Recently, the two HDAC inhibitors suberoylanilide hydroxamic acid (SAHA, Vorinostat) and Romidepsin (Depsipeptide, FK228) were FDA approved for the treatment of cutaneous T-cell lymphoma (CTCL). Although HDAC inhibitors are potent anticancer agents, these compounds act against several HDAC family members potentially resulting in numerous side effects. This stems from the fact that HDACs play crucial roles in a variety of biological processes including cell cycle progression, proliferation, differentiation, and development. Consistently, mice deficient in single HDACs mostly exhibit severe phenotypes. Therefore, it is necessary to specify the cancer-relevant HDACs in a given tumor type in order to design selective inhibitors that target only cancer cells without affecting normal cells. In this chapter, we summarize the current state of knowledge of individual nuclear HDAC family members in development and tumorigenesis, their contribution to the hallmarks of cancer, and the involvement of HDAC family members in different types of human malignancies.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources