Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Sep;3(11):1413-26.
doi: 10.4155/fmc.11.95.

Drug repositioning in the treatment of malaria and TB

Affiliations
Review

Drug repositioning in the treatment of malaria and TB

Alexis Nzila et al. Future Med Chem. 2011 Sep.

Abstract

The emergence and spread of drug resistance in the malaria parasite Plasmodium falciparum as well as multi- and extremely drug-resistant forms of Mycobacterium tuberculosis, the causative agent of TB, could hamper the control of these diseases. For instance, there are indications that the malaria parasite is becoming resistant to artemisinin derivatives, drugs that form the backbone of antimalarial combination therapy. Likewise, Mycobacterium tuberculosis strains that are multidrug-resistant or extremely drug-resistant to first- and second-line drugs have been associated with increased mortality. Thus, more than ever, new antimalarials and anti-TB drugs are needed. One of the strategies to discover new drugs is to reposition or repurpose existing drugs, thus reducing the cost and time of drug development. In this review, we discuss how this concept has been used in the past to discover antimalarial and anti-TB drugs, and summarize strategies that can lead to the discovery and development of new drugs.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources