Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial

A trial of an impedance threshold device in out-of-hospital cardiac arrest

Tom P Aufderheide et al. N Engl J Med. .

Abstract

Background: The impedance threshold device (ITD) is designed to enhance venous return and cardiac output during cardiopulmonary resuscitation (CPR) by increasing the degree of negative intrathoracic pressure. Previous studies have suggested that the use of an ITD during CPR may improve survival rates after cardiac arrest.

Methods: We compared the use of an active ITD with that of a sham ITD in patients with out-of-hospital cardiac arrest who underwent standard CPR at 10 sites in the United States and Canada. Patients, investigators, study coordinators, and all care providers were unaware of the treatment assignments. The primary outcome was survival to hospital discharge with satisfactory function (i.e., a score of ≤3 on the modified Rankin scale, which ranges from 0 to 6, with higher scores indicating greater disability).

Results: Of 8718 patients included in the analysis, 4345 were randomly assigned to treatment with a sham ITD and 4373 to treatment with an active device. A total of 260 patients (6.0%) in the sham-ITD group and 254 patients (5.8%) in the active-ITD group met the primary outcome (risk difference adjusted for sequential monitoring, -0.1 percentage points; 95% confidence interval, -1.1 to 0.8; P=0.71). There were also no significant differences in the secondary outcomes, including rates of return of spontaneous circulation on arrival at the emergency department, survival to hospital admission, and survival to hospital discharge.

Conclusions: Use of the ITD did not significantly improve survival with satisfactory function among patients with out-of-hospital cardiac arrest receiving standard CPR. (Funded by the National Heart, Lung, and Blood Institute and others; ROC PRIMED ClinicalTrials.gov number, NCT00394706.).

PubMed Disclaimer

Comment in

Similar articles

Cited by

References

    1. Eisenberg MS, Psaty BM. Cardiopulmonary resuscitation: celebration and challenges. JAMA. 2010;304:87–8. - PubMed
    1. Andreka P, Frenneaux MP. Haemodynamics of cardiac arrest and resuscitation. Curr Opin Crit Care. 2006;12:198–203. - PubMed
    1. Lurie KG, Zielinski T, McKnite S, Aufderheide TP, Voelckel W. Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation. Circulation. 2002;105:124–9. - PubMed
    1. Aufderheide TP, Lurie KG. Vital organ blood flow with the impedance threshold device. Crit Care Med. 2006;34(Suppl):S466–S473. - PubMed
    1. Yannopoulos D, Sigurdsson G, McKnite S, Benditt D, Lurie KG. Reducing ventilation frequency combined with an inspiratory impedance device improves CPR efficiency in swine model of cardiac arrest. Resuscitation. 2004;61:75–82. - PubMed

Publication types

Associated data