Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Aug;106 Suppl 1(0 1):172-8.
doi: 10.1590/s0074-02762011000900022.

Induction and maintenance of protective CD8+ T cells against malaria liver stages: implications for vaccine development

Affiliations
Review

Induction and maintenance of protective CD8+ T cells against malaria liver stages: implications for vaccine development

Sze-Wah Tse et al. Mem Inst Oswaldo Cruz. 2011 Aug.

Abstract

CD8+ T cells against malaria liver stages represent a major protective immune mechanism against infection. Following induction in the peripheral lymph nodes by dendritic cells (DCs), these CD8+ T cells migrate to the liver and eliminate parasite infected hepatocytes. The processing and presentation of sporozoite antigen requires TAP mediated transport of major histocompatibility complex class I epitopes to the endoplasmic reticulum. Importantly, in DCs this process is also dependent on endosome-mediated cross presentation while this mechanism is not required for epitope presentation on hepatocytes. Protective CD8+ T cell responses are strongly dependent on the presence of CD4+ T cells and the capacity of sporozoite antigen to persist for a prolonged period of time. While human trials with subunit vaccines capable of inducing antibodies and CD4+ T cell responses have yielded encouraging results, an effective anti-malaria vaccine will likely require vaccine constructs designed to induce protective CD8+ T cells against malaria liver stages.

PubMed Disclaimer

References

    1. Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan Y, Lew AM, Shortman K, Heath WR, Carbone FR. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity. 2006;25:153–162. - PubMed
    1. Amino R, Thiberge S, Martin B, Celli S, Shorte S, Frischknecht F, Ménard R. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med. 2006;12:220–224. - PubMed
    1. Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, Allan RS, Wojtasiak M, Shortman K, Carbone FR, Brooks AG, Heath WR. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol. 2009;10:488–495. - PubMed
    1. Beutler B, Hoebe K, Du X, Ulevitch RJ. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol. 2003;74:479–485. - PubMed
    1. Bongfen SE, Balam S, Torgler R, Romero JF, Corradin G. Processing of the circumsporozoite protein in infected hepatocytes is not dependent on aspartic proteases. Parasite Immunol. 2008;30:375–378. - PubMed

Publication types