Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jan;110(1):87-94.
doi: 10.1111/j.1742-7843.2011.00785.x. Epub 2011 Sep 28.

Reactive oxygen species and endothelial function--role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases

Affiliations
Free article
Review

Reactive oxygen species and endothelial function--role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases

Augusto C Montezano et al. Basic Clin Pharmacol Toxicol. 2012 Jan.
Free article

Abstract

The healthy endothelium prevents platelet aggregation and leucocyte adhesion, controls permeability to plasma components and maintains vascular integrity. Damage to the endothelium promotes endothelial dysfunction characterized by: altered endothelium-mediated vasodilation, increased vascular reactivity, platelet aggregation, thrombus formation, increased permeability, leucocyte adhesion and monocyte migration. Molecular processes contributing to these phenomena include increased expression of adhesion molecules, synthesis of pro-inflammatory and pro-thrombotic factors and increased endothelin-1 secretion. Decreased nitric oxide bioavailability and increased generation of reactive oxygen species (ROS) are among the major molecular changes associated with endothelial dysfunction. A critical source of endothelial ROS is a family of non-phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, including the prototypic Nox2-based NADPH oxidases, Nox1, Nox4 and Nox5. Other possible sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase, lipoxygenase and uncoupled nitric oxide synthase (NOS). Cross-talk between ROS-generating enzymes, such as mitochondrial oxidases and Noxs, is increasingly implicated in cellular ROS production. The present review discusses the importance of endothelial ROS in health and disease and focuses on the major ROS-generating systems in the endothelium, namely uncoupled endothelial nitric oxide synthase and NADPH oxidases.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources