Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011:76:1-31.
doi: 10.1016/B978-0-12-385895-5.00001-3.

Bioactive lipids in Trypanosoma cruzi infection

Affiliations
Review

Bioactive lipids in Trypanosoma cruzi infection

Fabiana S Machado et al. Adv Parasitol. 2011.

Abstract

Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite. Chagas disease remains a serious health problem in large parts of Mexico and Central and South America, where it is a major cause of morbidity and mortality. This disease is being increasingly recognized in non-endemic regions due to immigration. Heart disease develops in 10-30% of infected individuals. It is increasingly clear that parasite- and host-derived bioactive lipids potently modulate disease progression. Many of the changes that occur during acute and chronic Chagas disease can be accounted for by the effects of arachidonic acid (AA)-derived lipids such as leukotrienes, lipoxins, H(P)ETEs, prostaglandins (PGs) and thromboxane. During the course of infection with T. cruzi, changes in circulating levels of AA metabolites are observed. Antagonism of PG synthesis with cyclooxygenase (COX) inhibitors has both beneficial and adverse effects. Treatment with COX inhibitors during acute infection may result in increased parasite load and mortality. However, treatment instituted during chronic infection may be beneficial with no increase in mortality and substantial improvement with cardiac function. Recently, T. cruzi infection of mice deficient in AA biosynthetic enzymes for various pathways has yielded more insightful data than pharmacological inhibition and has highlighted the potential deleterious effects of inhibitors due to "off-target" actions. Using COX-1 null mice, it was observed that parasite biosynthesis is dependent upon host metabolism, that the majority of TXA(2) liberated during T. cruzi infection is derived from the parasite and that this molecule may act as a quorum sensor to control parasite growth/differentiation. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to, and maintenance of, the chronic stage of the disease. It is also likely that the same mediators that initially function to ensure host survival may later contribute to cardiovascular damage. Collectively, the eicosanoids represent a new series of targets for therapy in Chagas disease with defined potential therapeutic windows in which to apply these agents for greatest effect. A deeper understanding of the mechanism of action of non-steroidal anti-inflammatory drugs may provide clues to the differences between host responses in acute and chronic T. cruzi infection.

PubMed Disclaimer

Figures

FIGURE 1.1
FIGURE 1.1
Production and use of free arachidonic acid from various intracellular sources.

Similar articles

Cited by

References

    1. Abdalla GK, Faria GE, Silva KT, Castro EC, Reis MA, Michelin MA. Trypanosoma cruzi: the role of PGE2 in immune response during the acute phase of experimental infection. Exp Parasitol. 2008;118:514–521. - PubMed
    1. Aliberti J. Host persistence: exploitation of anti-inflammatory pathways by Toxoplasma gondii. Nat Rev Immunol. 2005;5:162–170. - PubMed
    1. Aliberti J, Serhan C, Sher A. Parasite-induced lipoxin A4 is an endogenous regulator of IL-12 production and immunopathology in Toxoplasma gondii infection. J Exp Med. 2002a;196:1253–1262. - PMC - PubMed
    1. Aliberti J, Hieny S, Reis e Sousa C, Serhan CN, Sher A. Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nat Immunol. 2002b;3:76–82. - PubMed
    1. Andrade HM, Murta SM, Chapeaurouge A, Perales J, Nirde P, Romanha AJ. Proteomic analysis of Trypanosoma cruzi resistance to Benznidazole. J Proteome Res. 2008;7:2357–2367. - PubMed

Publication types