Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec;25(12):4378-93.
doi: 10.1096/fj.11-191262. Epub 2011 Sep 1.

Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia

Affiliations

Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia

Lukas Bütikofer et al. FASEB J. 2011 Dec.

Abstract

Etiology and pathogenesis of sarcopenia, the progressive decline in skeletal muscle mass and strength that occurs with aging, are still poorly understood. We recently found that overexpression of the neural serine protease neurotrypsin in motoneurons resulted in the degeneration of their neuromuscular junctions (NMJ) within days. Therefore, we wondered whether neurotrypsin-dependent NMJ degeneration also affected the structure and function of the skeletal muscles. Using histological and functional analyses of neurotrypsin-overexpressing and neurotrypsin-deficient mice, we found that overexpression of neurotrypsin in motoneurons installed the full sarcopenia phenotype in young adult mice. Characteristic muscular alterations included a reduced number of muscle fibers, increased heterogeneity of fiber thickness, more centralized nuclei, fiber-type grouping, and an increased proportion of type I fibers. As in age-dependent sarcopenia, excessive fragmentation of the NMJ accompanied the muscular alterations. These results suggested the destabilization of the NMJ through proteolytic cleavage of agrin at the onset of a pathogenic pathway ending in sarcopenia. Studies of neurotrypsin-deficient and agrin-overexpressing mice revealed that old-age sarcopenia also develops without neurotrypsin and is not prevented by elevated levels of agrin. Our results define neurotrypsin- and age-dependent sarcopenia as the common final outcome of 2 etiologically distinct entities.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources