Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2011 Sep 5:11:235.
doi: 10.1186/1471-2334-11-235.

Canadian oncogenic human papillomavirus cervical infection prevalence: systematic review and meta-analysis

Affiliations
Meta-Analysis

Canadian oncogenic human papillomavirus cervical infection prevalence: systematic review and meta-analysis

Andrea C Tricco et al. BMC Infect Dis. .

Abstract

Background: Oncogenic human papillomavirus (HPV) infection prevalence is required to determine optimal vaccination strategies. We systematically reviewed the prevalence of oncogenic cervical HPV infection among Canadian females prior to immunization.

Methods: We included studies reporting DNA-confirmed oncogenic HPV prevalence estimates among Canadian females identified through searching electronic databases (e.g., MEDLINE) and public health websites. Two independent reviewers screened literature results, abstracted data and appraised study quality. Prevalence estimates were meta-analyzed among routine screening populations, HPV-positive, and by cytology/histology results.

Results: Thirty studies plus 21 companion reports were included after screening 837 citations and 120 full-text articles. Many of the studies did not address non-response bias (74%) or use a representative sampling strategy (53%). Age-specific prevalence was highest among females aged < 20 years and slowly declined with increasing age. Across all populations, the highest prevalence estimates from the meta-analyses were observed for HPV types 16 (routine screening populations, 8 studies: 8.6% [95% confidence interval 6.5-10.7%]; HPV-infected, 9 studies: 43.5% [28.7-58.2%]; confirmed cervical cancer, 3 studies: 48.8% [34.0-63.6%]) and 18 (routine screening populations, 8 studies: 3.3% [1.5-5.1%]; HPV-infected, 9 studies: 13.6% [6.1-21.1%], confirmed cervical cancer, 4 studies: 17.1% [6.4-27.9%].

Conclusion: Our results support vaccinating females < 20 years of age, along with targeted vaccination of some groups (e.g., under-screened populations). The highest prevalence occurred among HPV types 16 and 18, contributing a combined cervical cancer prevalence of 65.9%. Further cancer protection is expected from cross-protection of non-vaccine HPV types. Poor study quality and heterogeneity suggests that high-quality studies are needed.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Study flow.
Figure 2
Figure 2
Age-specific HPV prevalence. Abbreviations: Coll collection, NUN Nunavit, HC hybrid capture, n total sample size, ON Ontario, QC Quebec, PCR polymerase chain reaction, NFLD Newfoundland.
Figure 3
Figure 3
HPV prevalence meta-analyses among all participants. Note: Each point estimate and 95% confidence interval is a separate meta-analysis. Abbreviations: HR high risk, HPV human papillomavirus, CI confidence interval.
Figure 4
Figure 4
HPV prevalence meta-analyses among HPV-infected participants. Notes: Each point estimate and 95% confidence interval is a separate meta-analysis. One study (Aho 2003) included in the HPV prevalence among all participants was not included here because only one HPV type was examined (HPV-52). Abbreviations: HPV human papillomavirus, CI confidence interval.

References

    1. Schiffman M, Kjaer SK. Chapter 2: Natural history of anogenital human papillomavirus infection and neoplasia. J Natl Cancer Inst Monogr. 2003. pp. 14–19. - PubMed
    1. Munoz N, Bosch FX, de SS, Herrero R, Castellsague X, Shah KV, Snijders PJ, Meijer CJ. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–527. doi: 10.1056/NEJMoa021641. - DOI - PubMed
    1. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El GF, brahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V. A review of human carcinogens--Part B: biological agents. Lancet Oncol. 2009;10:321–322. doi: 10.1016/S1470-2045(09)70096-8. - DOI - PubMed
    1. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–19. doi: 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F. - DOI - PubMed
    1. Bernard HU, Calleja-Macias IE, Dunn ST. Genome variation of human papillomavirus types: phylogenetic and medical implications. Int J Cancer. 2006;118:1071–1076. doi: 10.1002/ijc.21655. - DOI - PubMed

MeSH terms

LinkOut - more resources