Towards universal influenza vaccines?
- PMID: 21893539
- PMCID: PMC3146782
- DOI: 10.1098/rstb.2011.0102
Towards universal influenza vaccines?
Abstract
Vaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the development and production of pandemic influenza vaccines are response time and production capacity as well as vaccine efficacy and safety. Several improvements can be envisaged. Vaccine production technologies based on embryonated chicken eggs may be replaced by cell culture techniques. Reverse genetics techniques can speed up the generation of seed viruses and new mathematical modelling methods improve vaccine strain selection. Better understanding of the correlates of immune-mediated protection may lead to new vaccine targets besides the viral haemagglutinin, like the neuraminidase and M2 proteins. In addition, the role of cell-mediated immunity could be better exploited. New adjuvants have recently been shown to increase the breadth and the duration of influenza vaccine-induced protection. Other studies have shown that influenza vaccines based on different viral vector systems may also induce broad protection. It is to be expected that these developments may lead to more universal influenza vaccines that elicit broader and longer protection, and can be produced more efficiently.
Similar articles
-
Synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses.J Virol. 2015 Mar;89(6):3221-35. doi: 10.1128/JVI.03337-14. Epub 2015 Jan 7. J Virol. 2015. PMID: 25568203 Free PMC article.
-
A VLP vaccine induces broad-spectrum cross-protective antibody immunity against H5N1 and H1N1 subtypes of influenza A virus.PLoS One. 2012;7(8):e42363. doi: 10.1371/journal.pone.0042363. Epub 2012 Aug 7. PLoS One. 2012. PMID: 22879951 Free PMC article.
-
Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades.Influenza Other Respir Viruses. 2011 Jan;5(1):13-23. doi: 10.1111/j.1750-2659.2010.00177.x. Epub 2010 Nov 3. Influenza Other Respir Viruses. 2011. PMID: 21138536 Free PMC article.
-
Narcolepsy, 2009 A(H1N1) pandemic influenza, and pandemic influenza vaccinations: what is known and unknown about the neurological disorder, the role for autoimmunity, and vaccine adjuvants.J Autoimmun. 2014 May;50:1-11. doi: 10.1016/j.jaut.2014.01.033. Epub 2014 Feb 19. J Autoimmun. 2014. PMID: 24559657 Review.
-
Influenza vaccines: a moving interdisciplinary field.Viruses. 2014 Oct 9;6(10):3809-26. doi: 10.3390/v6103809. Viruses. 2014. PMID: 25302957 Free PMC article. Review.
Cited by
-
Identification of Host Kinase Genes Required for Influenza Virus Replication and the Regulatory Role of MicroRNAs.PLoS One. 2013 Jun 21;8(6):e66796. doi: 10.1371/journal.pone.0066796. Print 2013. PLoS One. 2013. PMID: 23805279 Free PMC article.
-
Virus-like Particle Vaccines: A Prospective Panacea Against an Avian Influenza Panzootic.Vaccines (Basel). 2020 Nov 19;8(4):694. doi: 10.3390/vaccines8040694. Vaccines (Basel). 2020. PMID: 33227887 Free PMC article. Review.
-
Development of an improved polykaryon-based influenza virus rescue system.BMC Biotechnol. 2012 Sep 25;12:69. doi: 10.1186/1472-6750-12-69. BMC Biotechnol. 2012. PMID: 23009349 Free PMC article.
-
Emerging antiviral strategies to interfere with influenza virus entry.Med Res Rev. 2014 Mar;34(2):301-39. doi: 10.1002/med.21289. Epub 2013 Jun 25. Med Res Rev. 2014. PMID: 23801557 Free PMC article. Review.
-
Prevention of influenza by targeting host receptors using engineered proteins.Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6401-6. doi: 10.1073/pnas.1404205111. Epub 2014 Apr 14. Proc Natl Acad Sci U S A. 2014. PMID: 24733924 Free PMC article.
References
-
- De Jong J. C., Rimmelzwaan G. F., Fouchier R. A., Osterhaus A. D. 2000. Influenza virus: a master of metamorphosis. J. Infect. 40, 218–22810.1053/jinf.2000.0652 (doi:10.1053/jinf.2000.0652) - DOI - DOI - PubMed
-
- de Jong J. C., Beyer W. E., Palache A. M., Rimmelzwaan G. F., Osterhaus A. D. 2000. Mismatch between the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. J. Med. Virol. 61, 94–9910.1002/(SICI)1096-9071(200005)61:1<94::AID-JMV15>3.0.CO;2-C (doi:10.1002/(SICI)1096-9071(200005)61:1<94::AID-JMV15>3.0.CO;2-C) - DOI - DOI - PubMed
-
- Fiore A. E., Bridges C. B., Cox N. J. 2009. Seasonal influenza vaccines. Curr. Top. Microbiol. Immunol. 333, 43–8210.1007/978-3-540-92165-3_3 (doi:10.1007/978-3-540-92165-3_3) - DOI - DOI - PubMed
-
- Domenech J., Dauphin G., Rushton J., McGrane J., Lubroth J., Tripodi A., Gilbert J., Sims L. D. 2009. Experiences with vaccination in countries endemically infected with highly pathogenic avian influenza: the Food and Agriculture Organization perspective. Rev. Sci. Tech. 28, 293–305 - PubMed
-
- Lu H., Ismail M. M., Khan O. A., Al Hammad Y., Abdel Rhman S. S., Al-Blowi M. H. 2010. Epidemic outbreaks, diagnostics, and control measures of the H5N1 highly pathogenic avian influenza in the Kingdom of Saudi Arabia, 2007–08. Avian Dis. 54(Suppl. 1), 350–35610.1637/8807-040109-ResNote.1 (doi:10.1637/8807-040109-ResNote.1) - DOI - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical