Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct;31(13):1343-58.
doi: 10.1177/0333102411418259. Epub 2011 Sep 5.

Topiramate in the treatment of migraine: a kainate (glutamate) receptor antagonist within the trigeminothalamic pathway

Affiliations

Topiramate in the treatment of migraine: a kainate (glutamate) receptor antagonist within the trigeminothalamic pathway

Anna P Andreou et al. Cephalalgia. 2011 Oct.

Abstract

Background: The development of new agents for the preventive treatment of migraine is the greatest unmet need in the therapeutics of primary headaches. Topiramate, an anticonvulsant drug, is an effective anti-migraine preventive whose mechanism of action is not fully elucidated. Since glutamate plays a major role in migraine pathophysiology, the potential action of topiramate through glutamatergic mechanisms is of considerable interest.

Methods: Recordings of neurons in the trigeminocervical complex (TCC) and the ventroposteromedial thalamic nucleus (VPM) of anesthetized rats were made using electrophysiological techniques. The effects of intravenous or microiontophorezed topiramate on trigeminovascular activation of second- and third-order neurons in the trigeminothalamic pathway were characterized. The potential interactions of topiramate with the ionotropic glutamate receptors were studied using microiontophoresis.

Results: Both intravenous and microiontophorized topiramate significantly inhibited trigeminovascular activity in the TCC and VPM. In both nuclei microiontophoretic application of topiramate significantly attenuated kainate receptor-evoked firing but had no effect on N-methyl-d-aspartic acid or α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor activation.

Conclusion: The data demonstrate for the first time that topiramate modulates trigeminovascular transmission within the trigeminothalamic pathway with the kainate receptor being a potential target. Understanding the mechanism of action of topiramate may help in the design of new medications for migraine prevention, with the data pointing to glutamate-kainate receptors as a fruitful target to pursue.

PubMed Disclaimer

MeSH terms

LinkOut - more resources