Thermodynamic stability and energetics of DNA duplexes containing major intrastrand cross-links of second-generation antitumor dinuclear Pt(II) complexes
- PMID: 21894503
- DOI: 10.1007/s00775-011-0841-4
Thermodynamic stability and energetics of DNA duplexes containing major intrastrand cross-links of second-generation antitumor dinuclear Pt(II) complexes
Abstract
The effects of major DNA intrastrand cross-links of antitumor dinuclear Pt(II) complexes [{trans-PtCl(NH(3))(2)}(2)-μ-{trans-(H(2)N(CH(2))(6)NH(2)(CH(2))(2)NH(2)(CH(2))(6)NH(2))}](4+) (1) and [{PtCl(DACH)}(2)-μ-{H(2)N(CH(2))(6)NH(2)(CH(2))(2)NH(2)(CH(2))(6)NH(2))}](4+) (2) (DACH is 1,2-diaminocyclohexane) on DNA stability were studied with emphasis on thermodynamic origins of that stability. Oligodeoxyribonucleotide duplexes containing the single 1,2, 1,3, or 1,5 intrastrand cross-links at guanine residues in the central TGGT, TGTGT, or TGTTTGT sequences, respectively, were prepared and analyzed by differential scanning calorimetry. The unfolding of the platinated duplexes was accompanied by unfavorable free energy terms. The efficiency of the cross-links to thermodynamically destabilize the duplex depended on the number of base pairs separating the platinated bases. The trend was 1,5→1,2→1,3 cross-link of 1 and 1,5→1,3→1,2 cross-link of 2. Interestingly, the results showed that the capability of the cross-links to reduce the thermodynamic stability of DNA (ΔG(298)(0)) correlated with the extent of conformational distortions induced in DNA by various types of intrastrand cross-links of 1 or 2 determined by chemical probes of DNA conformation. We also examined the efficiency of the mammalian nucleotide excision repair systems to remove from DNA the intrastrand cross-links of 1 or 2. The efficiency of the excinucleases to remove the cross-links from DNA depended on the length of the cross-link; the trend was identical to that observed for the efficiency of the intrastrand cross-links to thermodynamically destabilize the duplex. Thus, the results are consistent with the thesis that an important factor that determines the susceptibility of the intrastrand cross-links of dinuclear platinum complexes 1 and 2 to be removed from DNA by nucleotide excision repair is the efficiency of these lesions to thermodynamically destabilize DNA.
Similar articles
-
Antitumor bifunctional dinuclear Pt(II) complex BBR3535 forms interduplex DNA cross-links under molecular crowding conditions.J Biol Inorg Chem. 2012 Feb;17(2):239-45. doi: 10.1007/s00775-011-0845-0. Epub 2011 Sep 21. J Biol Inorg Chem. 2012. PMID: 21938443
-
Energetics, conformation, and recognition of DNA duplexes containing a major adduct of an anticancer azolato-bridged dinuclear Pt(II) complex.Biochim Biophys Acta. 2012 Oct;1820(10):1502-11. doi: 10.1016/j.bbagen.2012.05.014. Epub 2012 Jun 7. Biochim Biophys Acta. 2012. PMID: 22683702
-
Long range 1,4 and 1,6-interstrand cross-links formed by a trinuclear platinum complex. Minor groove preassociation affects kinetics and mechanism of cross-link formation as well as adduct structure.J Am Chem Soc. 2004 Feb 25;126(7):2166-80. doi: 10.1021/ja036105u. J Am Chem Soc. 2004. PMID: 14971952
-
[Drug discovery research in in-vivo antitumor-active azolato-bridged dinuclear Pt(II) complexes].Yakugaku Zasshi. 2012;132(3):253-9. doi: 10.1248/yakushi.132.253. Yakugaku Zasshi. 2012. PMID: 22382827 Review. Japanese.
-
Trans-diammineplatinum(II): what makes it different from cis-DDP? Coordination chemistry of a neglected relative of cisplatin and its interaction with nucleic acids.Met Ions Biol Syst. 1996;33:105-41. Met Ions Biol Syst. 1996. PMID: 8742842 Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials