Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1979 Apr 25;254(8):2961-7.

Modulation of glucose uptake in animal cells. Studies using plasma membrane vesicles isolated from nontransformed and simian virus 40-transformed mouse fibroblast cultures

  • PMID: 218958
Free article
Comparative Study

Modulation of glucose uptake in animal cells. Studies using plasma membrane vesicles isolated from nontransformed and simian virus 40-transformed mouse fibroblast cultures

J E Lever. J Biol Chem. .
Free article

Abstract

Plasma membrane vesicles isolated from nontransformed and Simian virus 40-transformed mouse fibroblast cultures catalyzed carrier-mediated D-glucose transport without detectable metabolic conversion to glucose 6-phosphate. Glucose transport activity was stereospecific, temperature-dependent, sensitive to inactivation by p-chloromercuriphenylsulfonate, and accompanied plasma membrane material during subcellular fractionation. D-Glucose efflux from vesicles was inhibited by phloretin, an inhibitor of glucose uptake in intact cells. Cytochalasin B, a potent inhibitor of glucose uptake when tested with the intact cells used for vesicle isolation did not inhibit glucose transport in vesicles despite the presence of high affinity cytochalasin binding sites in isolated membranes. The enhanced glucose uptake observed in intact cells after viral transformation was not expressed in vesicles: no significant differences in glucose transport specific activity could be detected in vesicle preparations from nontransformed and transformed mouse fibroblast cultures. These findings indicate that cellular components distinct from glucose carriers can mediate changes in glucose uptake in mouse fibroblast cultures in at least two cases: sensitivity to inhibition by cytochalasin B and the enhanced cellular sugar uptake observed after viral transformation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources